TECHNICAL MANUAL

DIRECT AND GENERAL SUPPORT MAINTENANCE MANUAL

RADIO SET
AN/URC-92
(NSN 5820-01-057-6447)

WARNING

Several kilovolts are present at the Antenna Coupler antenna post, E1, during steps 13 thru 14b. Exercise caution and do not contact antenna post E 1 .

HEADQUARTERS
DEPARTMENT OF THE ARMY WASHINGTON, DC 1 February 1980

Direct and General Support Maintenance Manual
 RADIO SET AN/URC-92
 (NSN 5820-01-057-6447)

REPORTING OF ERRORS

You can improve this manual by recommending improvements using DA Form 2028-2 (Test) located in the back of the manual. Simply tear out the self-addressed form, fill it out as shown on the sample, fold it where shown, and drop it in the mail.

If there are no blank DA Form 2028-2 (Test) in the back of your manual, use the standard DA Form 2028 (Recommended Changes to Publications and Blank Forms) and forward it to Commander, US Army Communications and Electronics Materiel Readiness Command, ATTN: DRSEL-ME-MQ Fort Monmouth, NJ 07703. A reply will be furnished direct to you.

Table of Contents

			Paragraph	Page
CHAPTER Section	1.	INTRODUCTION		
		General	1-1	1-1
	11	Description and data	1-8	1-1
CHAPTER Section	2.	FUNCTIONING OF EQUIPMENT		
	1.	General.. 2-1		2-1
	II.	Radio receiver-transmitter RT-1277/URC-92 functional operation2-3		2-1
	III.	Antenna coupler CU-2229/URC-92 functional operation..2-12		2-15
CHAPTER Section	3.	DIRECT SUPPORT		
		General 3-1	3-1
	11.		.3-3	3-1
	III.	Checkout/ troubleshoot.	. 3 -4	3-1
	IV	Maintenance..	. 3-7	3-16
	V .	Administrative Storage \qquad GENERAL SUPPORT		3-18
CHAPTER Section	4.			
	.	GeneralTools and equipment.	4-1	4-1
	11.		4-3	4-1
	III.	Checkout/troubleshoot.	4-4	4-1
	IV.	Maintenance.	4-7	4-32
	V.	Administrative Storage	4-23	4-46
APPENDIX	A.	REFERENCES		A-1
INDEX				dex 1
Figure		Title		Page
1-1	Radio Set AN/URC-92 Typical Warranty Notice			1-2
1-2				1-3
2-1	Radio Receiver-Transmitter Simplified Block Diagram .Power Supply Block Diagram.............................			2-2
2-2				2-8
2-3	Synthesizer Simplified Block Diagram..			2-9
2-4	Antenna Coupler Control Unit Schematic Diagram .			2-16
3-1	BNC/Chip Lead Cable..			3-1
3-2	Direct Support Checkout/Troubleshoot the Receiver-Transmitter Waveforms			3-5
3-3	Front Panel and Circuit Card Assemblies...			3-17
3-4	Antenna Coupler Control..			3-18
4-1	BNC/Chip Lead Cable..			4-1
4-2	General Support Checkout/Troubleshoot the Receiver-Transmitter Waveforms			4-5
4-3	Power Supply ...			4-34
4-4	Filter Module...			4-36
4-5	Filter Module Circuit Cards			4-37
4-6	Display Assembly \qquad 21 MHz Adjustment Setup (1A4A1)			4-38
4-7				4-39

Figure	Title	Page
4-8	17 MHz Adjustment Setup(1A4A1).	4-39
4-9	19.45 MHz Adjustment Setup \#1 (1A4A3)	4-40
4-10	19.45 MHz Adjustment Setup \#2 (1A4A3)	4-40
4-11	19.45 MHz Adjustment Setup \#3 (1A4A3)	4-41
4-12	100.75 MHz Bandpass Filter Adjustment Setup \#1	4-41
4-13	100.75 MHz Bandpass Filter Adjustment Setup \#2	4-41
4-14	100.75 MHz Bandpass Filter Adjustment Setup \#3.	4-41
4-15	81.25 MHz Bandpass Filter Adjustment Setup \#1.	4-42
4-16	81.25 MHz Bandpass Filter Adjustment Setup \#2.	4-42
4-17	VHF VCO CCA Adjustment Points	4-43
4-18	C MAX/C MIN Adjustment Locator	4-45
4-19	L MAX/L MIN Adjustment Locator	4-45
4-20	Connection and Adjustment Points - Amplitude Detector Adjustment	4-47
4-21	Connection and Adjustment Points - Phase Detector Adjustment .	4-48
4-22	Back-Panel-Exploded View .	4-49
4-23	Receiver-Transmitter-Center.	4-50
4-24	Spectrum Generator Circuit Card Assembly (CCA)	4-51
4-25	Low Digit Generator (CCA) .	4-52
4-26	Translator(CCA)	4-53
4-27	VHF Divider(CCA)	4-54
4-28	VHF VCO(CCA).	4-55
4-29	VHF Mixer(CCA)	4-56
4-30	IF Filter (CCA)	4-57
4-31	Sideband Generator (CCA).	4-58
4-32	Audio (CCA).	4-59
4-33	Power Supply-Exploded View.	4-60
4-34	Power Supply Chassis-Exploded View	4-61
4-35	Regulator Assy .	4-62
4-36	Synthesizer Mother Board.	4-63
4-37	Receiver/Exciter Mother Board	4-64
4-38	DC Inverter-Exploded View .	4-65
4-39	DC Inverter (CCA)	4-66
4-40	RF Power Amplifier(CCA)	4-67
4-41	Main Harness	4-68
4-42	Odd Channel Filter (CCA)	4-69
4-43	Even Channel Filter (CCA).	4-70
4-44	Receiver Filter (CCA).	4-71
4-45	Motor Central Board Assembly	4-72
4-46	Motor Central Board (CCA).	4-73
4-47	Front Panel Assembly (1 of 3).	4-74
4-47	Front Panel Assembly (2 of 3).	4-75
4-47	Front Panel Assembly (3 of 3).	4-76
4-48	Main Harness-Front Panel A Transmit B Receive Relay	4-77
4-49	Speaker Driver(CCA) .	4-78
4-50	Decoder (CCA)	4-79
4-51	Display Assembly \& (CCA)	4-80
4-52	Tuning Control.	4-81
4-53	Coupler Unit CU-2229/URC View B.	4-82
4-54	Coupler Unit CU-2229/URC View C	4-83
4-55	Main Harness	4-84
4-56	K2-K3 Relay Assembly	4-85
4-57	Control Logic (CCA)	4-86
4-58	Phase and Amplitude Control (CCA)	4-87
4-59	Regulator (CCA).	4-88
4-60	Phase and Amplitude Assembly	4-89
4-61	Phase and Amplitude (CCA) .	4-90
4-62	Relay Control Assembly..	4-91
4-63	Servo Control (CCA)..	4-92
4-64	PCB Filter (CCA).	4-93
4-65	Rear Panel-Exploded View.	4-94
4-66	Electrical Equipment Mounting Base MT-4982/URC-92	4-95

List of Illustrations

Figure	
FO－1	Receiver Block Diagram
FO－2	Transmitter Block Diagram
FO－3	Synthesizer Block Diagram
FO－4	Filter Module Block Diagram
FO－5	Antenna Coupler Block Diagram
FO－6	Control Logic Board Block Diagram
FO－7	Phase \＆Amphtude Control Block Diagram
FO－8	Keyline Simplified Diagram
FO－9	Main Frame Wiring
FO－10	Half Duplex Front Panel Wiring Diagram
FO－11	Decoder and Display Schematic
FO－12	Speaker Driver Schematic
FO－13	Receiver／Exciter Schematic
FO－14	VHF Mixer Schematic
FO－15	IF Filter Schematic
FO－16	Sideband Generator Schematic
FO－17	Audio Board Schematic
FO－18	Spectrum Generator Schematic
FO－19	Low Digit Generator Schematic
FO－20	Translator Schematic
FO－21	VHF Divider Schematic
FO－22	VCO Schematic
FO－23	Synthesizer Mother Board Schematic
FO－24	Filter Module Block Diagram
FO－25	Odd Channel Filter Schematic
FO－26	Even Channel Filter Schematic
FO－27	Receive Filter Board Schematic
FO－28	Motor Control Board Schematic
FO－29	Power Supply Schematic
FO－30	DC Inverter Schematic
FO－31	RF Power Amplifier Schematic
FO－32	CU－2229 Chassis Wiring Schematic Diagram
FO－33	Control Logic Schematic Diagram
FO－34	Phase and Amplitude Control Schematic Diagram
FO－35	Servo Amplifier Schematic Diagram

Title
Receiver Block Diagram
Transmitter Block Diagram
Synthesizer Block Diagram
Filter Module Block Diagram
Antenna Coupler Block Diagram

Phase \＆Amphtude Control Block Diagram
年位五e Simplified Diagram
Half Duplex Front Panel Wiring Diagram
Decoder and Display Schematic
Driver Schematic
Receiverex Schematic
IF Filter Schematic
Sideband Generator Schematic
Audio Board Schematic
Spectrum Generator Schematic

Translator Schematic
VHF Divider Schematic
VCO Schematic
Synthesizer Mother Board Schematic
Filter Module Block Diagram
Odd Chan Filter Schematic
Receive Filter Board Schematic
Motor Control Board Schematic
Power Supply Schematic
DC Inverter Schematic CU－2229 Chassis Wiring Schematic Diagram
Control Logic Schematic Diagram
Servo Amplifier Schematic Diagram

Page

All fold－in illustrations are assembled at the back of the manual

All fold－in

 illustrations are assembled at the back of the manual| Number | Title | Page |
| :---: | :---: | :---: |
| 2－1 | Synthesizer Programmed Frequencies | 2－11 |
| 2－2 | Band Numbers and Frequency Ranges | 2－14 |
| 3－1 | Voltage Measurements | 3－1 |
| 3－2 | Checkout／Troubleshoot the Receiver－Transmitter RT－1277／URC－92（Direct Support） | 3－2 |
| 3－3 | Checkout／Troubleshoot the Antenna Coupler CU－2229／URC－92（Direct Support） | 3－12 |
| 4－1 | Voltage Measurements | 4－1 |
| 4－2 | Checkout／Troubleshoot the Receiver－Transmitter RT－1277／URC－93（General Support） | 4－2 |
| 4－3 | Checkout／Troubleshoot the Antenna Coupler CU－2229／URC－92（General Support） | 4－22 |

CHAPTER 1

INTRODUCTION

Section I. GENERAL

THE RADIO SET AN/URC-92 is COVERED BY A RELIABILITY IMPROVEMENT WARRANTY DO NOT PERFORM ANY MAINTENANCE ON THIS EQUIPMENT UNTIL AFTER THE WARRANTY PROVISIONS (TM11-5820-873-12) HAVE BEEN COMPLIED WITH.

1-1. Scope.

a. This manual contains direct and general support instructions for Radio Set AN/URC-92 (Fig. 1-1). Instructions for troubleshooting, testing, disassembling, inspecting, aligning and reassembling the components of the radio set are included in this manual. A detailed functional analysis of the AN/URC-92 is included in Chapter 2
b. The AN/URC-92 is comprised of Radio ReceiverTransmitter RT-1277/URC-92 and Antenna Coupler CU-2229/URC-92.

1-2. Forms and Records.

a. Reports of Maintenance and Unsatisfactory Equipment. Maintenance forms, records, and reports which are to be used by maintenance personnel at all maintenance levels are listed in and prescribed by TM 38-750, the Army Maintenance Management System.
b. Report of Packaging and Handling Deficiencies. Fill out and forward DD Form 6 (Packaging Improvement Report) as prescribed in AR 70058/NAVSUPINST 4030 29/AFR 71-13/MCO P4030 29A, and DSAR 4145.8.
c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as prescribed in AR 5538/NAVSUPINST 4610 33B/AFR 75-18/MCO P4610 19C, and DLAR 4500.15.

1-3. Warranty.

a. This equipment is under a Reliability Improvement Warranty. To ensure validation of the warranty, the following steps must be taken when returning discrepant equipment.
(1) DA Form 2407 is to accompany the
equipment to the contractor's facility.
(2) Fill in the required information on the WARRANTY NOTICE attached to the equipment.
b. Failure to provide the information required by those documents may invalidate the warranty.
c. Return the equipment as expeditiously as possible to the contractor at the address shown on the WARRANTY NOTICE (figure 1-2).

1-4. Destruction of Army Materiel.

Demolition and destruction of electronic equipment will be under the direction of the commander and in accordance with TM 750-4244-2.

1-5. Administrative Storage.

Administrative storage of equipment issued to and used by Army activities shall be in accordance with the procedures specified. Refer to TM 11-5820-873-12 for specific procedures to be followed when preparing the AN/URC-92 for administrative storage.

1-6. Calibration.

Calibration is not required for Radio Set AN/URC-92.

1-7. Reporting Equipment Improvement Recommendations (EIR).

If your Radio Set AN/URC-92 needs improvement, let us know. Send us an EIR. You, the user, are the only one who can tell us what you don't like about your equipment. Let us know why you don't like the design. Tell us why a procedure is hard to perform. Put it on an SF 368 (Quality Deficiency Report). Mail it to Commander, US Army Communications and Electronics Materiel Readiness Command, ATTN: DRSEL-ME-MQ, Fort Monmouth, NJ 07703. We'll send you a reply.

Section II. Description of Radio Set

1-8. Description of Radio Set.

Refer to TM 11-5820-873-12 for the description and illustrations of the components of Radio Set AN/URC92.

1-9. Tabulated Data.

Technical characteristics of Radio Set AN/URC-92 are listed in TM 11-5820-873-12.

Figure 1-1. Radio Set AN/URC-92.

WARRANTY

VALID UNTIL OCT 79

1. RADIO SET AN/URC-92 COMPONENTS. RECEIVER-TRANSMITTER; ANTENNA COUPLER, HANDSET; HEADSET; CW KEY.
2. RETURN FAILED COMPONENT, FOR EXCHANGE, TO: SUNAIR; 3101 S. W. 3 AVE.; FT. LAUDERDALE, FLA 33315. PHONE 305-525-1505.
3. SHIPPING INSTRUCTIONS: CARDBOARD BOX + FILLER; RETURN ADDRESS.
4. INCLUDE FAILURE CIRCUMSTANCE.

Figure 1-2. Typical Warranty Notice.

CHAPTER 2

FUNCTIONING OF EQUIPMENT

Section I. GENERAL

2-1. Introduction.

This chapter describes how the radio set operates. The chapter is divided into four sections which present the information in a logical sequence.

2-2. Description of Sections.

a. Functional Operation of Radio ReceiverTransmitter RT-1277/URC-92. Section II describes the functional operation of the RT-1277/URC-92. The section progresses from a simplified system explanation and block diagram to detailed circuit descriptions and block diagrams. This presentation enables easy identification of circuitry common in both receive and transmit functions and that circuitry specific to either receive or transmit.

NOTE
Although ANTENNA COUPLER CONTROL 1A2 is housed in the radio set, it functions as part of the CU-2229/URC-92. Certain functioning with meter 1A2M1 will be discussed in this section but the remainder of ANTENNA COUPLER CONTROL 1A2 functions will be covered in Section III.
b. Functional Operation of Antenna Coupler CU-2229/URC-92. Section III describes the functional operation CU-2229/URC-92.
c. Functional Operation of Circuits. Section IV describes the functional operation of non-conventional circuits and certain conventional circuits. The conventional circuits discussed in this section are those circuits that perform functions that may not be readily apparent to an experienced maintenance technician.

Section II. RADIO RECEIVER-TRANSMITTER RT-1277/URC-92 FUNCTIONAL OPERATION

2-3. Simplified Overall Operation (Fig. 2-1).

a. Operating Frequency. The RT-1227/URC-92 operates over a frequency range of 1.6 to 299999 MHz . The operating frequency is determined by the setting of FREQ CONTROL 1A1S15 and the FREQUENCY A and FREQUENCY B front panel switches.
(1) FREQ CONTROL 1 A1S15 selects which group of FREQUENCY switches that control the operating frequency
(2) The setting of the selected FREQUENCY switches is decoded by decoder 1A1A2 and displayed by LED display 1A1A3.
(3) Synthesizer 1A4 has three output frequencies. Two of the output frequencies are fixed and the third controls the operating frequency of the RT-1277/URC92.
b. Receive Operation. The RF signal is received at ANT jack 1A8J1 and passed through filter 1A5 to receiver/exciter 1A3. The receiver/exciter converts the RF signal to audio. The audio signal is amplified by speaker driver 1A1A1 and used to drive speaker 1A1LS1.
c. Transmit Operation.
(1) CW. Operating the CW Key causes a
sidetone to be generated in receiver/exciter 1A3. The sidetone is coupled through speaker driver 1A1A1 to speaker 1A1LS1. The receiver/exciter also uses the sidetone to modulate the signals from the synthesizer. The RF output from the receiver/exciter is amplified by RF power amplifier 1A7. The output from the RF power amplifier is passed through filter 1A5 to ANT jack 1A8J1.
(2) Voice Audio from the handset is coupled into receiver/exciter 1A3. The receiver/exciter uses the audio to modulate the signals from the synthesizer. The RF output from the receiver/exciter is amplified by RF power amplifier 1A7. The output from the RF power amplifier is passed through filter 1A5 to ANT jack 1A8J1.

2-4. Receiver Functional Operation (Fig. FO-1).

a. Overall Functional Operation. Incoming RF is filtered by the selected bandpass filters in filter module 1A5 para 2-10). The output of the bandpass filters is a narrow segment of the RF spectrum that includes the frequency selected by the FREQUENCY switches. The output from the filter module is coupled into VHF mixer 1A3A1 where it is fed through a high pass filter. The signal is then amplified and mixed with the $1^{\text {st }}$ local

EL5EB003
Figure 2-1. Radio Receiver-Transmitter Simplified Block Diagram.
oscillator signal from synthesizer 1A4. The resultant signal is filtered m a narrow band filter which passes only the $91.25 \mathrm{MHz} \pm 15 \mathrm{kHz}$ portion of the signal. The output from the filter is amplified and mixed with the $2^{\text {nd }}$ local oscillator signal from synthesizer 1A4, to produce 10.5 MHz. The 10.5 MHz output form the VHF mixer is coupled into IF filter 1A3A2. The IF filter amplifies the signal and it is fed to a diode gating network The diode gating network selects the upper sideband filter (USB), lower sideband filter (LSB), or amplitude modulation filter (AM) in accordance with the setting of the mode switch. These filters determine the receiver's bandwidth and reduce the interference form adjacent channels The upper sideband, lower sideband, or double sideband output from the filters is further amplified and coupled into audio board 1A3A4 where it is detected and amplified In the audio board the signal is coupled to a product detector when receiving sideband signals and to a fixed amplifier and an envelope detector for receiving amplitude modulated signals. The fixed amplifier also feeds into the AGC detector which develops a DC voltage proportional to the received signal amplitude. The AGC voltage is amplified and used to control the voltage gain of the RF amplifier and the IF amplifiers. The product detector combines the signal with the $3^{\text {rd }}$ local oscillator (10.5 MHz), giving an audio signal which reproduces the original transmitted audio. The audio is
fed to a 600 ohm line driver and to a fixed audio amplifier. The envelope detector detects the amplitude of the received signal reproducing the audio on a transmitted AM signal. The resultant audio is also fed to the 600 ohm line driver and to the fixed audio amplifier. The output of the fixed audio amplifier is connected to the VOLUME control, then to the speaker driver (located on the front panel), which supplies up to five watts of audio to the speaker. The AGC voltage is also used to vary the current through the front panel meter to give a visual indication of relative signal strength received. The front panel RF GAIN control acts to vary the gain of an amplifier which reduces the AGC voltage, reducing the gain of the RF amplifier and the IF amplifiers. This greatly reduces background noise when receiving strong signals.
b. Detailed Functional Operation.
(1) Power supply 1A6 (para 2-7) provides the regulated DC voltages required to operate the circuits in the RT-1277/URC-92.
(2) TCXO 1A8U1 is an extremely stable, temperature controlled, crystal oscillator and provides the 5 MHz reference signal to the synthesizer.
(3) Synthesizer 1A4 (para 2-8 generates three local oscillator frequencies The $1^{\text {st }}$ local oscillator frequency of 91.25 to 121.2499 MHz is controlled by the
selected front panel FREQUENCY switches and determines the operating frequency of the radio. The $2^{\text {nd }}$ local oscillator frequency is 80.75 MHz And, the $3^{\text {rd }}$ local oscillator frequency is 10.5 MHz .
(a) The $3^{\text {rd }}$ local oscillator signal is derived by direct synthesis techniques (i.e. by dividing and mixing the output of 1A8U1). This local oscillator signal is used as a product detector injection signal.
(b) The $2^{\text {nd }}$ local oscillator consists of a crystal oscillator at a nominal frequency of 80.75 MHz . This frequency is used in VHF mixer 1A3A1 to convert the $1^{\text {st }}$ IF of 91.25 MHz to the $2^{\text {nd }}$ IF of 10.5 MHz . Since the $2^{\text {nd }}$ local oscillator is not referenced to 1A8U1, a small frequency error can exist. However, because of the mixing scheme used, this same error appears on the $1^{\text {st }}$ local oscillator signal and is therefore canceled at the output of the VHF mixer.
(c) The VCO ($1^{\text {st }}$ local oscillator) is a phase locked oscillator covering the frequency range of 91.25 to 121.2499 Hz in 100 Hz steps. The exact frequency of the $1^{\text {st }}$ local oscillator is equal to 91.25 MHz plus the setting of the selected FREQUENCY switches and the difference between the frequency of the $2^{\text {nd }}$ local oscillator and 80.75 MHz . The $1^{\text {st }}$ local oscillator is used to convert the incoming signal to 91.25 MHz .
(4) The incoming RF signal is coupled into the RT-1277/URC-92 at ANT jack 1A8J1. From the ANT jack, the signal is coupled through the selected bandpass filter in filter module 1A5 (para 2-10) to VHF mixer board 1A3A1 in the receiver/exciter.
(5) Diode gate 1A3A1CRJ is switched off by the + 12 volts receive enable signal and has no effect on circuit operation. In the transmit mode diode 1A3A1CR1 would ground gate 2 of RF amplifier 1A3A1Q2, disabling the amplifier.
(6) The 16 to 299999 MHz output from bandpass filter 1A5 is amplified by RF amplifier 1A3A1Q2 and coupled through diode gate 1A3A1CR3 to the $1^{\text {st }}$ balanced mixer composed of diodes 1A3A1CR4 thru 1A3A1CR7. Diode gate 1A3A1CR3 is enabled by the +12 volts receive enable signal and allows the 16 to 299999 MHz signal to pass.
(7) The 91.25 MHz to $121.2499 \mathrm{MHz} 1^{\text {st }}$ local oscillator signal from synthesizer 1A4 is coupled to the 1st balanced mixer through $1^{\text {st }}$ local oscillator ampllfier 1A3A1Q5. The nominal frequency of the 1st local oscillator signal is 91.25 MHz plus the setting of the selected FREQUENCY switches.
(a) If the selected FREQUENCY switches are set to 16 , the $1^{\text {st }}$ local oscillator nominal frequency is 92.85 MHz.
(b) If the selected FREQUENCY switches are set to 29 9999, the $1^{\text {st }}$ local oscillator nominal frequency is 121.24999 MHz .
(8) The output of the $1^{\text {st }}$ balanced mixer is the
sum of the input frequencies and the difference between the two input frequencies. Since the nominal frequency of the $1^{\text {st }}$ local oscillator signal is 91.25 MHz plus the setting of the selected FREQUENCY switches, the difference between the two input frequencies will always be 91.25 MHz .
(9) The output of the $1^{\text {st }}$ balanced mixer is coupled to VHF filter 1A3A1FL1. The filter is a narrow band crystal filter with a center frequency of 91.25 MHz . Therefore, only the difference frequency output from the $1^{\text {st }}$ balanced mixer is passed by 1A3A1FL1.
(10) Amplifier 1A3A1Q6 is enabled by the 12 volts receive enable signal and amplifies the 91.25 MHz output from 1A3A1FL1. The output from amplifier 1A3A1Q6 is applied to the $2^{\text {nd }}$ balanced mixer composed of diodes 1A3A1CR9 thru 1A3A1CR12.
(11) The nominal $80.75 \mathrm{MHz} 2^{\text {nd }}$ local oscillator signal from synthesizer 1 A 4 is coupled to the $2^{\text {nd }}$ balanced mixer through $2^{\text {nd }}$ local oscillator amplifier 1A3A1Q8. The 10.5 MHz (difference frequency) output of the $2^{\text {nd }}$ balanced mixer is coupled to amplifier 1A3A2Q3.
(12) Amplifier 1A3A2Q3 is enabled by the 12 volts receive enable signal and amplifies the 10.5 MHz output from the 2nd balanced mixer. The output from amplifier 1A3A2Q3 is applied to the Input of three diode gates.
(13) The diode gates at the Inputs and outputs of filters 1A3A2FT1, 1A3A2FL2 and 1A3A2FL3 are enabled by +12 volts from mode switch 1A1S13. The 10.5 MHz signal from 1A3A2Q3 is coupled through the selected filter to amplifiers 1A3A2U1 and 1A3A2U2.
(14) Because the RT-1277/URC-92 uses high side conversion, the sidebands are reversed in the IF circuits. That is, the lower sideband is at a higher frequency than the upper sideband.
(a) With mode switch 1A1S13 set to LSB, diode gate 1A3A2CR8, diode gate 1A3A2CR1, 1A3A3CR2 and diode gate 1A3A2CR11, 1A3A2CR12 are enabled The lower sideband signal is coupled through upper sideband filter 1A3A2FL1. The center frequency of 1A3A2FL1 is 10.5016 MHz .
(b) With mode switch 1A1S13 ste to USB or CW, diode gate 1A3A2CR10, diode gate 1A3A2CR5, 1A3A2CR6 and diode gate 1A3A2CR15, 1A3A2CR16 are enabled. The upper sideband signal is coupled through lower sideband filter 1A3A2FL3. The center frequency of 1A3A2FL3 is 104984 MHz .
(c) With mode switch 1A1S13 set to AM (and relay 1A8K1 not energized) diode gate 1A3A2CR7, diode gate 1A3A2CR3, 1A3A2CR4 and diode gate 1A3A2CR13, 1A3A2CR14 are enabled. The signal is coupled through AM filter 1A3A2FL2 The center frequency of 1A3A2FL2 is 10.5 MHz .
(15) The output from the selected filter is amplified
by amplifiers 1A3A2U1 and 1A3A2U2 and coupled to the inputs of amplifier 1A3A4Q1 and product detector 1A3A4Q6, 1A3A4Q8, 1A3A4Q9.
(a) The output from amplifier 1A3A4Q1 is coupled to emitter follower 1A3A4Q2 and AM detector 1A3A4Q7, 1A3A4Q10.

1. The output from emitter follower 1A3A4Q2 is coupled to AGC detector 1A3A4Q3. The DC output from 1A3A4Q3 is coupled to emitter follower 1A3A4Q4. The output of 1A3A4Q4 is the AGC voltage RF gain control amplifier 1A3A4Q12 is connected across the AGC line, RF GAIN control 1A1R55 controls the gain of 1A3A4Q12 and established the minimum level of AGC. With 1A1R55 fully counterclockwise, it should be possible to completely disable the receiver. The AGC voltage is also used to drive S meter amplifier 1A3A4Q5. The output of 1A3A4Q5 drives meter 1A2M1.
2. When extremely high signal levels are present, peak signal level AGC amplifier 1A3A5Q2 limits the level of input signal that is applied to RF amplifier 1A3A1Q2.
3. With mode switch 1 A 1 S 13 set to AM (and relay 1A8K1 not energized) AM detector 1A3A4Q7, 1A3A4Q10 is enabled. The 10.5 MHz signal from 1A3A4Q1 is detected by AM detector 1A3A4Q7, 1A3A4Q10. The audio signal from the AM detector is coupled to the inputs of 600 ohm audio line driver 1A3A4U1 and audio amplifier 1A3A4Q11.
(b) With mode switch 1A1S13 set to LSB, USB or CW product detector 1A3A4Q6, 1A3A4Q8, 1A3A4Q9 is enabled. The 10.5 MHz 3 rd local oscillator signal from the synthesizer is mixed with the 10.5 MHz signal from amplifier 1A3A2U1, 1A3A2U2 in product detector 1A3A4Q6, 1A3A4Q8, 1A3A4Q9. The audio signal from the product detector is coupled to the inputs of 600 ohm audio line driver 1A3A4U1 and audio amplifier 1A3A4Q11.
(16) The audiot signal from 600 ohm audio line driver 1A3A4U1 is coupled to AUDIO connector 1A8J2. The audio signal from audio amplifier 1A3A4Q11 is coupled through VOLUME control 1A1R51 to speaker driver 1A1A1. The output from 1A1A1 is coupled through the normally closed contacts of PHONE jack 1A1J3 to speaker 1A1LS1.

2-5. Transmitter Functional Operation
 (Fig. FO-2).

The RT-1277/URC-92 can be used in the transmit mode in any setting of the mode switch. This paragraph describes functional operation as a transmitter with the mode switch set to LSB, USB, AM, or CW For functional operation with the mode switch set to CPLR TUNE KW refer to paragraph 2-6.
a. Overall Functional Operation. The RT-1277/URC-92 is placed in the transmit mode by
operating the press-to-talk switch on the handset, by grounding the keyline at AUDIO connector 1A8J2, or by operating the CW key. Operating the CW key energizes the CW tone oscillator, which produces a 1 kHz audio signal. Input audio from the handset, the 600 ohm balanced line, or the CW tone oscillator is amplified and used to modulate the 10.5 MHz , 3rd local oscillator signal from synthesizer 1A4. The resultant double sideband suppressed carrier signal is amplified and filtered in accordance with the setting of the mode switch. The remaining upper or lower sideband signal (AM transmission is actually upper sideband plus carrier) is amplified and, if the mode switch is set to AM, mixed with the 10.5 MHz carrier signal. The lower sideband, upper sideband, or upper sideband plus carrier signal is mixed with the 80.75 MHz of the 2nd local oscillator signal from synthesizer 1A4. The resultant signals are amplified and passed through a 91.25 MHz (sum frequency) filter. The 91.25 MHz signal is mixed with the 91.25 to 121.2499 MHz , 1st local oscillator signal, from synthesizer 1A4. The difference frequency (1st local oscillator frequency minus 91.25 MHz) is amplified to the 100 watt level and passed through a low pass filter to ANT jack 1A8J1.

b. Detailed Functional Operation.

(1) Power supply 1A6 (para 2-7) provides the regulated DC voltages required to operate the circuits in the RT-1277/URC-92.
(2) TCXO 1A8U1 is an extremely stable, temperature controlled, crystal oscillator and provides the 5 MHz reference signal to the synthesizer.
(3) Synthesizer 1A4 (para 2-8) generates three local oscillator frequencies. The 1st local oscillator frequency of 91.25 to 121.2499 MHz is controlled by the selected front panel FREQUENCY switches and determines the operating frequency of the radio. The 2nd local oscillator frequency is 80.75 MHz . And, the 3rd local oscillator frequency is 10.5 MHz .
(a) The 3rd local oscillator signal is derived by direct synthesis techniques (i.e. by dividing and mixing the output of 1A8U1). This local oscillator signal is used as a carrier generator.
(b) The 2nd local oscillator consists of a crystal oscillator at a nominal frequency of 80.75 MHz . This frequency is used in VHF mixer 1A3A1 to convert the 1st IF of 91.25 MHz to the 2 nd IF of 10.5 MHz . Since the 2nd local oscillator is not referenced to 1A8U1, a small frequency error can exist. However, because of the mixing scheme used, this same error appears on the 1st local oscillator signal and is therefore canceled at the output of the VHF mixer.
(c) The VCO (1st local oscillator) is a phase locked oscillator covering the frequency range of 91.25 to 121.2499 Hz in 100 Hz steps. The exact frequency of the 1st local oscillator is equal to 91.25 MHz plus the setting of the selected FREQUENCY switches and
the difference between the frequency of the 2nd local oscillator and 80.75 MHz . The 1st local oscillator is used to convert the 1st IF frequency of 91.25 MHz to the selected operating frequency.
(4) The RT-1277/URC-92 is normally in the receive mode It is placed in the transmit mode when relays 1A5A4K2 and 1A8K1 are energized (see para 222 for a discussion of the keying circuits). The relays are energized as follows:
(a) Operating the press-to-talk switch on the handset energizes relays 1A5A4K2 and 1A8K1 when mode switch 1A1S13 is set to LSB, USB, or AM.
(b) Grounding the keyline at AUDIO connector 1A8J2 (600 ohm audio) energizes relays 1A5A4K2 and 1A8K1 when mode switch 1A1S13 is set to LSB, USB, CW, or AM.
(c) Operating the CW key causes transistors 1A3AQ12 and 1A3A3Q14 to energize relays 1A5A4K2 and 1 A8K1 when mode switch 1A3S13 is set to CW. Transistors 1A3A3Q12 and 1A3A3Q14 hold the relays energized for approximately 1 second after the CW key is released. This prevents the relays from deenergizing between normal CW characters and words but automatically returns the unit to the receive mode when the CW key has not been operated for 1 second. This delay is adjusted by 1A3A3R50.
(5) Audio is brought into the RT-1277/URC-92 as follows:
(a) Audio from the handset is coupled through XMT GAIN control 1A1R58 to microphone audio amplifier 1A3A3Q4 when mode switch 1A1S13 is set to LSB, USB, or AM. The amplified audio from 1A3A3Q4 is applied to balanced modulator 1A3A3CR3 thru 1A3A3CR6.
(b) Audio from the 600 ohm balanced input is amplified by 600 ohm audio amplifier 1A3A3Q11. The amplified audio from 1A3A3Q11 is applied to balanced modulator 1A3A3CR3 thru 1A3A3CR6.
(c) Operating the CW key turns on the CW tone oscillator, 1A3A3Q7 and 1A3A3Q8, when mode switch 1A1S13 is set to CW. The 1 kHz tone from the CW tone oscillator is applied to 600 ohm audio line driver 1A3A4U1, audio amplifier 1A3A4Q11, and emitter follower 1A3A3Q6.

1. The audio signal from 600 ohm audio line driver 1A3A4U1 is coupled to AUDIO connector 1A8J2.
2. The audio signal from audio amplifier 1A3A411 is coupled through VOLUME control 1A1R51 to speaker driver 1A1A1. The output from 1A1A1 is coupled through the normally closed contacts of PHONE jack 1A1J3 to speaker 1A1LSL.
3. The audio signal from emitter follower 1A3A3Q6 is applied to balanced modulator 1A3A3CR3 thru 1A3A3CR6.
(6) When the transmit enable signal is present
and the mode switch is not m CPLR TUNE KW, transmit audio enable/disable switch 1A3A5Q1 is enabled. This enables 3rd local oscillator amplifier 1A3A3Q1. The 10.5 MHz 3 rd local oscillator signal from synthesizer 1A4 is amplified by 3rd local oscillator amplifier 1A3A3Q1 and applied to balanced modulator 1A3A3CR3 thru 1A3A3CR6.
(7) The balanced modulator modulates the 10.5 MHz 3rd local oscillator signal with the audio signal from either of the three audio sources ((5) above). The output from the balanced modulator is a double sideband suppressed carrier signal at 10.5 MHz . The double sideband suppressed carrier signal from the balanced modulator is applied to IF amplifier 1A3A2Q4.
(8) IF amplifier 1A3A2Q4 is enabled by the transmit enable signal and amplifies the output from the balanced modulator. The output from 1A3A2Q4 is coupled to the inputs of two diode gates.
(9) The diode gates at the inputs and outputs of filters 1A3A2FL1 and 1A3A2FL2 are enabled by +12 volts from mode switch 1A1S13. The 10.5 MHz signal is coupled through the selected filter to amplifier 1A3A2Q1, 1A3A2Q2.
(10) Because the RT-1277/URC-92 uses high side conversion, the sidebands are reversed in the IF circuits. That is, the lower sideband is at a higher frequency than the upper sideband.
(a) With mode switch 1A1S13 set to LSB, diode gate 1A3A2CR8, diode gate 1A3A2CR1, 1A3A2CR2 and diode gate 1A3A2CR11, 1A3A2CR12 are enabled. The lower sideband signal is coupled through upper sideband filter 1A3A2FL1. The center frequency of 1A3A2FL1 is 10.5016 MHz .
(b) With mode switch 1A1S13 set to USB or CW, diode gate 1A3A2CR10, diode gate 1A3A2CR5, 1A3A2CR6 and diode gate 1A3A2CR15, 1A3A2CR16 are enabled. The upper sideband signal is coupled through lower sideband filter 1A3A2FL3. The center frequency of 1A3A2FL3 is 10.4984 MHz .
(c) The AM transmit mode of the RT-1277/URC-92 is actually upper sideband plus carrier. With mode switch 1A1S13 set to AM and relay 1A8K1 energized, diode gate 1A3A2CR9, diode gate 1A3A2CR5, 1A3A2CR6 and diode gate 1A3A2CR15, 1A3A2CR16 are enabled. The upper sideband signal is coupled through lower sideband filter 1A3A2FL3. The upper sideband signal is combined with the 10.5 MHz carrier signal by amplifier 1A3A2Q1, 1A3A2Q2 ((12) below).
(11) The gain of amplifier 1A3A2Q1, 1A3A2Q2 is controlled by the output of ALC amplifier 1A3A3Q9, 1A3A3Q10 ((19) below). The ALC voltage limits the gain of 1A3A2Q1, 1A3A2Q2 when the transmitter output reaches 100 watts peak or there is a higher VSWR at the transmitter output. Amplifier 1A3A2Q1, 1A3A2Q2 is enabled by the transmit enable signal and amplifies the
signal from the selected filter when mode switch 1A1S13 is set to LSB, USB or CW The output from the amplifier is coupled to 2nd balanced mixer 1A3A1CR9 thru 1A3A1CR12.
(12) When mode switch 1 A1S13 is set to AM, amplifier 1A3A2Q1, 1A3A2Q2 combines the upper sideband signal with the 10.5 MHz carrier signal and amplifies the combined signal ((11) above).
(a) The AM/CPLR TUNE KW transmit enable signal is coupled from mode switch 1A1S13 through relay 1A8K1 to turn on AM transmit switch 1A3A3Q13. The AM transmit switch enables automatic carrier control (ACC) amplifier 1A3A3Q2, 1A3A3Q3, 1A3A3Q5.
(b) The gain of the automatic carrier control amplifier is controlled by the detected carrier signal from ACC detector 1A5A4CR6, 1A5A4CR12 ((20) below). The automatic carrier control amplifier amplifies the 10.5 MHz 3 rd local oscillator signal. The amplified 3rd local oscillator signal is injected into amplifier 1A3A2Q1, 1A3A2Q2 where it is combined with the upper sideband signal.
(13) The nominal 80.75 MHz 2nd local oscillator signal from synthesizer 1A4 is coupled to the 2nd balanced mixer through 2nd local oscillator amplifier 1A3A1Q8. The output from the 2nd balanced mixer is coupled to amplifier 1A3A1Q7.
(14) Amplifier 1A3A1Q7 is enabled by the transmit enable signal and amplifies the output from the 2nd balanced mixer. The 91.25 MHz (sum frequency) output signal from IA3A1Q7 is coupled through VHF filter 1A3A1FL1 to 1st balanced mixer 1A3A1CR4 thru 1A3A1CR7.
(15) The 91.25 MHz to 121.2499 MHz 1st local oscillator signal from synthesizer 1A4 is coupled to the 1st balanced mixer through 1st local oscillator amplifier 1A3A1Q5. The nominal frequency of the 1st local oscillator signal is 91.25 MHz plus the setting of the selected FREQUENCY switches. If the selected FREQUENCY switches are set to 12.3456 , the 1st local oscillator frequency is 103.5956 MHz . The output of the 1st balanced mixer is coupled to amplifier 1A3A1Q1, 1A3A1Q3.
(16) The gain of amplifier 1A3A1Q1, 1A3A1Q3 is controlled by the output of current ALC amplifier 1A3A1Q4 ((18) below). The current ALC amplifier limits the gain of 1A3A1Q1, 1A3A1Q3 during high current peaks. Amplifier 1A3A1Q1, 1A3A1Q3 is enabled by the transmit enable signal and amplifies the difference frequency (equal to the setting of the selected FREQUENCY switches) output of the 1st balanced mixer.
(17) RF power amplifier 1A7A1Q11 thru 1A7A1Q6 is enabled by the transmit enable signal and amplifies the HF signal from 1A3A1Q1, 1A3A1Q3 to the 100 watt level. The output from the RF power amplifier is
coupled through the selected low pass filter (para 2-10 to ANT jack 1A8J1.
(18) Current ALC detector 1A7A17 monitors the supply current to the RF power amplifier. When the supply current exceeds 10 amperes, 1A7A1Q7 is turned on causing current ALC amplifier 1A3A1Q4 to reduce the gain of amplifier 1A3A1Q1I, 1A3A1Q3.
(19) ALC amplifier 1A3A3Q9, 1A3A3Q10 limits the gain of amplifier 1A3A2Q1, 1A3A2Q2 when the VSWR is too high or the RF output voltage is too high.
(a) VSWR ALC detector 1A7A1CR4 causes the ALC amplifier to limit the gain of amplifier 1A3A2Q1, 1A3A2Q2 when the peak voltage on the collector of 1A7A1Q6 is too high.
(b) Reflected power detector 1A5A4CR16 causes the ALC amplifier to limit the gain of amplifier 1A3A2Q1, 1A3A2Q2 when the VSWR on the RF output line is too high.
(c) Voltage ALC detector 1A5A4Q2, 1A5A4Q3 causes the ALC amplifier to limit the gain of amplifier 1A3A2Q1, 1A3A2Q2 when the RF output voltage is too high.
(20) ACC detector 1A5A4CR6, 1A5A4CR12 reduces the gain of automatic carrier control amplifier 1A3A3Q2, 1A3A3Q3, 1A3A3Q5. At initial turn on in AM transmit mode, automatic carrier control amplifier 1A3A3Q2, 1A3A3Q3, 1A3A3Q5 is operating at maximum gain ACC detector 1A5A4CR6, 1A5A4CR12 detects the level of carrier signal on the RF output line and reduces the gain of the automatic carrier control amplifier to establish the desired carrier signal level.
(21) Power output detector 1A5A4CR5 samples the voltage on the RF output line. The output from 1A5A4CR5 drives meter 1A2M1 when FWD power is selected by 1A2S1.

2-6. CPLR TUNE KW Functional Operation (Fig. FO-2)

With mode switch 1A1S13 in CPLR TUNE KW, pressing TUNE START switch 1A2S2 places the RT-1277/URC92 in the transmit mode. Relays 1A5A4K2 and 1A8K1 are energized through the SU-2229/URC-92.
a. Overall Functional Operation. The 10.5 MHz , 3rd local oscillator signal from synthesizer 1A4 is amplified and mixed with the 80.75 MHz , 2nd local oscillator signal from synthesizer 1A4. The resultant signals are amplified and passed through a 91.25 MHz (sum frequency) filter. The 91.25 MHz signal is mixed with the 91.25 to 121.2499 MHz , 1st local oscillator signal from synthesizer 1A4. The difference frequency (1st local oscillator frequency minus 91.25 MHz) is amplified to the $30-40$ watt level and passed through a low pass filter to ANT jack 1A8J1.
b. Detailed Functional Operation.
(1) Power supply 1A6 (para 2-7) provides the regulated DC voltages required to operate the circuits in the RT-1277/URC-92.
(2) TCXO 1A8U1 is an extremely stable, temperature controlled, crystal oscillator and provides the 5 MHz reference signal to the synthesizer.
(3) Synthesizer 1A4 (para 2-8] generates three local oscillator frequencies. The 1st local oscillator frequency of 91.25 to 121.2499 MHz is controlled by the selected front panel FREQUENCY switches and determines the operating frequency of the radio. The 2nd local oscillator frequency is 80.75 MHz . And, the 3rd local oscillator frequency is 10.5 MHz .
(a) The 3rd local oscillator signal is derived by direct synthesis techniques (i.e. by dividing and mixing the output of 1A8U1). This local oscillator signal is used to generate the carrier signal.
(b) The 2nd local oscillator consists of a crystal oscillator at a nominal frequency of 80.75 MHz . This frequency is used in VHF mixer 1A3A1 to convert the 1st IF of 91.25 MHz to the 2 nd IF of 10.5 MHz . Since the 2nd local oscillator is not referenced to 1A8U1, a small frequency error can exist. However, because of the mixing scheme used, this same error appears on the 1st local oscillator signal and is therefore canceled at the output of the VHF mixer.
(c) The VCO (1st local oscillator) is a phase locked oscillator covering the frequency range of 91.25 to 121.2499 Hz in 100 Hz steps. The exact frequency of the 1st local oscillator is equal to 91.25 MHz plus the setting of the selected FREQUENCY switches and the difference between the frequency of the 2nd local oscillator and 80.75 MHz . The 1st local oscillator is used to convert the 1st IF frequency of to 91.25 MHz to the selected operating frequency.
(4) Transmit audio enable/disable switch 1A3A5Q1 is turned off by the audio disable from mode switch 1A1S13. This blocks the transmit enable from 1A8K1 and 3rd local oscillator amplifier 1A3A3Q1 is not enabled. With no 10.5 MHz input, balanced modulator 1A3A3CR3 thru 1A3A3CR6 has no output and audio can not enter the IF circuits.
(5) The AM/CPLR TUNE KW transmit enable signal is coupled from mode switch 1A1S13 through relay 1A8K1 to turn on AM transmit switch 1A3A3Q13. The AM transmit switch enables automatic carrier control amplifier 1A3A3Q2, 1A3A3Q3, and 1A3A3Q5. The gain of the automatic carrier control amplifier is established by the setting of 1A3A3R18.
(6) The 10.5 MHz , 3rd local oscillator signal from synthesizer 1A4 is amplified by the automatic carrier control amplifier and coupled to the input of amplifier 1A3A2Q1, 1A3A2Q2.
(7) Amplifier 1A3A2Q1, 1A3A2Q2 is enabled by the transmit enable signal and amplifies the 10.5 MHz carrier signal from the automatic carrier control
amplifier. The output from amplifier 1A3A2Q1, 1A3A2Q2 is coupled to 2nd balanced mixer 1A3A1CR9 thru 1A3A1CR12 ALC amplifier 1A3A3Q9, 1A3A3Q10 has no effect on 1A3A2Q1, 1A3A2Q2. If no VSWR ALC signal, PA high voltage or PA high current ALC input voltages are present at the inputs of 1A3A3Q9 \& 1A3A3Q10. The voltage ALC does not take effect until the transmitter output reaches 100 watt peak (transmitter output in CPLR TUNE KW mode is 30 to 40 watts).
(8) The nominal 80.75 MHz , 2nd local oscillator signal from synthesizer 1A4 is coupled to the 2nd balanced mixer through 2nd local oscillator amplifier 1A3A1Q8. The output from the 2nd balanced mixer is couple to amplifier 1A3A1Q7.
(9) Amplifier 1A3A1Q7 is enabled by the transmit enable signal and amplifies the output from the 2nd balanced mixer. The 91.25 MHz (sum frequency) output signal from 1A3A1Q7 is coupled through VHF filter 1A3A1FL1 to 1st balanced mixer 1A3A1CR4 thru 1A3A1CR7.
(10) The 91.25 MHz to 121.2499 MHz , 1st local oscillator signal from synthesizer 1A4 is coupled to the 1st balanced mixer through 1st local oscillator amplifier 1A3A1Q5. The nominal frequency of the 1st local oscillator signal is 91.25 MHz plus the setting of the selected FREQUENCY switches. (If the selected FREQUENCY switches are set to 12.3456 , the 1st local oscillator frequency is 103.5956 MHz .) The output of the 1st balanced mixer is coupled to amplifier 1A3A1Q1, 1A3A1Q3.
(11) The gain of amplifier 1A3A1Q1, 1A3A1Q3 is controlled by the output of current ALC amplifier 1A3A1Q4 ((13) below). The current ALC amplifier limits the gain of 1A3A1Q1, 1A3A1Q3 during high current peaks. Amplifier 1A3A1Q1, 1A3A1Q3 is enabled by the transmit enable signal and amplifies the difference frequency (equal to the setting of the selected FREQUENCY switches) output of the 1st balanced mixer.
(12) RF power amplifier 1A7A1Q1 thru 1A7A1Q6 is enabled by the transmit enable signal and amplifies the HF signal from 1A3A1Q1, 1A3A1Q3 to the 100 watt level ($30-40$ watts AM \& CPLR TUNE KW). The output from the RF power amplifier is coupled through the selected low pass filter (para 2-10) to ANT jack 1A8J1.
(13) Current ALC detector 1A7A1Q7 monitors the supply current to the RF power amplifier. When the supply current exceeds 10 amperes, 1A7A1Q7 is turned on causing current ALC amplifier 1A3A1Q4 to reduce the gain of amplifier 1A3A1Q11, 1A3A1Q3.
(14) Power output detector 1A5A4CR5 samples the voltage on the RF output line. The output from 1A5A4CR5 drives meter 1A2M1 when FWD power is selected by 1A2S1.

2-7. Power Supply 1A6 Functional Operation

 (Fig. 2-2 and Fig. FO-31)a. The power supply provides regulated DC voltages to operate the circuits in the RT-1277/URC-92. The input to the power supply can be from 115 or 230 volt, 50 to 60 Hz AC power sources or from 13 or 26 volt DC power sources.
b. When operated from a DC power source, the input DC is applied to DC inverter 1A6A2. The DC inverter converts the DC input to a 120 to 200 Hz square wave which is applied to primary 2 of transformer 1A6T1. When operated from an AC power source, the input AC is applied directly to primary 1 of transformer 1A6T1.
c. Transformer 1A6T1 has three secondary outputs of 40 VAC, 20 VAC and 12 VAC. The secondary outputs are applied through bridge rectifiers to the regulator circuits. The 28, 12 and 5 volt outputs from the regulator circuits are used to operate the circuits In the radio.

2-8. Synthesizer 1A4 Simplified Functional

 Operation (Fig. 2-3).a. Spectrum Generator 1A4A1. The spectrum generator generates the 3rd local oscillator frequency
and the reference frequencies needed in the synthesizer. All of the frequencies generated by the spectrum generator are derived by a combination of multiplying, dividing and/or mixing the 5 MHz reference signal from TCXO 1A8U1. The outputs from the spectrum generator are the 10.5 MHz , 3rd local oscillator signal, 17 MHz and 1 kHz signals that are coupled to low digit generator 1A4A2, 20 and 21 MHz signals that are coupled to translator 1A4A3 and a 100 kHz signal that is coupled to VHF divider 1A4A4.
b. Low Digit Generator 1A4A2. The low digit generator controls the $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 Hz components of the radios operating frequency. The inputs to the low digit generator are 17 MHz and 1 kHz signals from the spectrum generator, binary coded decimal from the selected to $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 Hz FREQUENCY switches and a coarse steering voltage from the 10 kHz FREQUENCY switch. The output is a 1.5 to 1.5999 MHz signal with the frequency of the signal being equal to 1.5 MHz plus the frequency set by the selected $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 Hz FREQUENCY switches.
c. Translator 1A4A3. The translator generates the 80.75 MHz , 2nd local oscillator frequency. The translator also combines the 80.75 MHz signal with the 20 MHz signal from spectrum generator 1A4A1, the 21 MHz signal from spectrum generator 1A4A1 (or from

an internal oscillator with the VFO control on), the 1.5 to 1.5999 MHz signal from low digit generator 1A4A2 and the 91.25 to 121.2499 MHz signal from VCO 1A4A5, and produces a 10.0 to 399 MHz signal. The 10.0 to 39.9 MHz signal is coupled to VHF divider 1A4A4. The frequency of the 1.5 to 1.5999 MHz signal is equal to 15 MHz plus the frequency set by the selected $10 \mathrm{kHz}, 1$ kHz and 100 Hz FREQUENCY switches. The frequency of the 91.25 to 121.2499 MHz signal from VCO 1A4A5 is equal to 91.25 MHz plus the frequency set by all of the selected FREQUENCY switches. The frequency of the 10.0 to 399 MHz signal is equal to 10.0 MHz plus the setting of the selected $10 \mathrm{MHz}, 1 \mathrm{MHz}$ and 100 kHz FREQUENCY switches and the difference between the frequency of the 2nd local oscillator and 80.75 MHz .
d. VHF Divider 1A4A4. The VHF divider generates a fine steering control voltage for VCO 1A4A5. The inputs to the VHF divider are a 100 kHz reference signal from spectrum generator 1A4A1, a 10.0 to 399 MHz signal from translator 1A4A3, binary coded decimal from the selected 1 MHz and 100 kHz FREQUENCY switches and binary coded decimal, representing the setting of the selected 10 MHz FREQUENCY switch, from VCO 1A4A5. The VHF divider compares the input signals and generates a fine steering correction voltage that represents the difference between the frequency of the 91.25 to 121.2499 MHz signal from VCO 1A4A5 and the frequency set by the selected FREQUENCY switches plus 91.25 MHz plus the difference between the
frequency of the 2nd local oscillator and 80.75 MHz .
e. VCO 1A4A5. The voltage controlled oscillator generates the 91.25 to 121.2499 MHz , 1st local oscillator frequency. The variable frequency 1st local oscillator signal controls the operating frequency of the RT-1277/URC-92. The output frequency from the VCO is equal to the frequency set by the selected FREQUENCY switches plus 91.25 MHz and the difference between the frequency of the 2nd local oscillator and 80.75 MHz The VCO frequency is determined by the following:

$$
\mathrm{F}_{\mathrm{S}}-\left(\mathrm{F}_{\mathrm{O}}+91.25 \mathrm{MHz}=\mathrm{e}\right)
$$

where:
$\mathrm{F}_{\mathrm{S}}=91.25$ to 121.2499 MHz signal from VCO
1A4A5
$F_{0}=$ Frequency set by selected FREQUENCY switches
$\mathrm{e}=80.75 \mathrm{MHz}$ minus the frequency of 2 nd local oscillator

The VCO contains three oscillators that are selected by the band control voltage from the selected 10 MHz FREQUENCY switch. The operating frequency of the selected oscillator is controlled by a course steering voltage from the selected 1 MHz FREQUENCY switch and a fine steering voltage from VHF divider 1A4A4.

Figure 2-3. Synthesizer Simplified Block Diagram.

2-9. Synthesizer 1A4 Detailed Functional Operation (Fig FO-3, and FO-18 thru FO-23)

The synthesizer generates the three local oscillator injection frequencies used in the IF circuits of the radio. The 3rd local oscillator frequency is fixed at 10.5 MHz and is generated by spectrum generator 1A4A1 (a below). The 2nd local oscillator frequency is fixed at 80.75 MHz and is generated by translator 1A4A3 (c below). The 1st local oscillator frequency is variable and controls the operating frequency of the radio. The 1st local oscillator frequency is generated by VCO 1A4A5 (e below). The signals used to control the 1st local oscillator frequency are generated in other areas of the synthesizer. The frequency of some of these signals is controlled by the setting of the selected FREQUENCY control switches. Table 2-1 lists the points where programmed frequencies and division ratios can be found in the synthesizer. The table also shows the frequency or division ratio at these points for various settings of the selected FREQUENCY control switches.
a. Spectrum Generator 1A4A1 (Fig. FO-3 and Fig. FO-18).
(1) 20 MHz Reference Generator. The 5 MHz reference signal from TCXO 1A8U1 is amplified by 1A4A1U1 and clipped by the diode clipper. The positive going half waves from the diode clipper are inverted by 1A4A1U2A. The output of 1A4A1U2A is applied to divide-by- 5 counter 1A4A1U4 ((2) below) and one shot 1A4A1U2B, 1A4A1U2C. The 5 MHz pulse from the one shot is inverted by 1A4A1U2D. The fourth harmonic of this 5 MHz pulse (20 MHz) is filtered by the 20 MHz bandpass filter and amplified by 1A4A1U33. The 20 MHz pulse output from 1A4A1U3 is applied to low digit generator 1A4A2 (b below), 17 MHz mixer 1A4A1Q6 ((5) below) and 20 MHz amplifier 1A4A1U8 ((6) below).
(2) 1 MHz Reference Generator. The 5 MHz signal from inverter 1A4A1U2A ((1) above) is applied to divide-by-5 counter 1A4A1U4. The 1 MHz output from 1A4A1U4 is applied to divided-by-10 counter 1A4A1U5 ((3 below), through the 1 MHz bandpass filter to amplifier 1A4A1Q1, 1A4A1Q2 ((6) below) and to 3 MHz amplifier 1A4A1Q5 ((5) below).
(3) 100 kHz Reference Generator. The 1 MHz pulse from 1A4A1U4 ((2) above) is applied to divideby10 counter 1A4A1U5 The 100 kHz output from 1A4A1U5 is applied to VHF divider 1A4A4 (d below) and to divide-by-10 counter 1A4A1U6 ((4) below)
(4) 1 kHz Reference Generator. The 100 kHz pulse from 1A4A1U5 ((3) above) is applied to divideby10 counter 1A4A1U6 The 10 kHz pulse from 1A4A1U6 is applied to divlde-by- 10 counter 1A4A1U7 The 1 kHz pulse from 1A4A1U7 is applied to low digit generator 1 A4A2 (b below).
(5) 17 MHz Reference Generator. The third harmonic of the 1 MHz pulse from 1A4A1U4 ((2) above) is amplified by 3 MHz amplifier 1A4A1Q5. The 3 MHz output from 1A4A1Q5 is applied to 17 MHz mixer 1A4A1Q6. The other input to 1A4A1Q6 is the 20 MHz signal from 1A4A1U3 ((1) above). The two inputs are mixed in 1A4A1Q6 and the 17 MHz difference frequency is filtered by the bandpass filter. The 17 MHz output of the bandpass filter is coupled through amplifier (complementary emitter follower) 1A4A1Q7, 1A4A1Q8 to low digit generator 1A4A2 (b below).
(6) 21 MHz Reference Generator. The 1 MHz pulse from 1A4A1U4 ((2) above) is filtered by the 1 MHz bandpass filter. The 1 MHz sinewave from the 1 MHz bandpass filter is amplified by complementary emitter follower 1A4A1Q1, 1A4A1Q2. The 1 MHz sinewave from the complementary emitter follower is applied to balanced mixer 1A4A1CR4 thru 1A4AiCR7. The other input to be balanced mixer is the 20 MHz signal from 1A4A1U3 ((1) above). The 20 MHz signal from 1A4A1U3 is amplified by 1A4A1U8 and applied to the balanced mixer. The 21 MHz sum frequency is filtered by the 21 MHz bandpass filter and amplified by 1A4A1U9. The 21 MHz signal from 1A4A1U9 is coupled through emitter follower 1A4A1Q9 to translator 1A4A3 (c below).
(7) 10.5 MHz 3rd Local Oscillator Signal. The 21 MHz signal from 1A4A1U9 ((6) above) is coupled to divide-by-2 counter 1A4A1U10. When the RT-1277/URC-92 is operating in the AM receive mode, or if the setting of the selected 1 MHz FREQUENCY switch is changed while transmitting switch 1A4A1Q3 is turned on disabling 1A4A1U10. At all other times 1A4A1Q3 is off and 1A4A1U10 divides the 21 MHz input by 2 . The 10.5 MHz output from 1A4A1U10 is coupled through emitter follower 1A4A1Q4 to receiver/exciter 1A3.(para 2-4).
b. Low Digit Generator 1A4A2 (Fig. FO-3 and Fig. FO-21)
(1) Voltage Controlled Oscillator 1A4A2. VCO 1A4A2Q1, 1A4A2Q2 is a Colpitts oscillator with a frequency range of 150 to 15999 MHz . The oscillating frequency of the VCO is equal to the setting of the selected $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 Hz FREQUENCY switches times 10 , plus 15 MHz . Coarse frequency tuning is provided by the action of the coarse frequency voltage (from the selected 10 kHz FREQUENCY switch) on varactor diodes 1A4A2CR1, 1A4A2CR2. Fine frequency control is provided by comparing the output of the VCO with the 17 MHz and 1 kHz signals from spectrum generator 1A4A1 (a above). Phase detector 1A4A2U2 ((4) below) develops an output voltage that is proportional to the difference between the frequency of the VCO and the desired frequency of the VCO This voltage is applied to varactor

Table 2-1. Synthesizer Programmed Frequencies.

FREQUENCY switch setting						1A4A2U1 Frequency	1A4A2		1A4A3Q3	1A4A3Q11	1A4A3Q4	1A4A5	1A4A4U2	1A4A2 Preset	
						Preset	1A4A2Q6								
10	1	100	10	1	100		Counter	Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	Counter	
M Hz	MHz	KHz	KHz	KHz	Hz_{2}		MHz	Divided by	MHz	$\mathrm{MHz}^{\text {a }}$	$\mathrm{MHz}^{\text {d }}$	MHz	MHz	MHz	Divided by
0	1	6	0	0	0	150	2000	15	195	8125	116	9285	29	116	
0	1	6	0	0	1	15001	1999	15001	194999	812501	116	928501	29	116	
0	1	6	0	1	0	1501	1990	1501	19499	81251	116	92851	29	116	
0	1	6	0	1	1	15011	1989	15011	194989	812511	116	928511	29	116	
0	1	6	1	0	0	151	1900	151	1949	8126	116	9286	29	116	
0	1	6	1	2	3	15123	1877	15123	194877	812629	116	928623	29	116	
0	1	7	0	0	0	150	2000	15	195	8125	117	9295	2925	117	
0	1	7	1	2	3	15123	1877	15123	194877	812629	117	929623	2925	117	
0	2	6	0	0	1	15001	1999	15001	194999	812501	126	938501	3150	126	
1	0	0	0	0	0	150	2000	15	195	8125	200	10125	50	200	
1	1	6	1	2	3	15123	1877	15123	194877	812629	216	1028629	54	216	
2	0	0	0	0	0	150	2000	15	195	8125	300	11125	75	300	
2	0	3	0	0	0	150	2000	15	195	8125	303	11155	7575	303	
2	4	0	0	0	0	150	2000	15	195	8125	340	11525	85	340	
2	4	5	0	0	0	150	2000	15	195	8125	345	11575	8625	345	
2	4	5	6	0	0	156	1400	156	1944	8131	345	11581	8625	345	
2	4	5	6	7	0	1567	1330	1567	19433	81317	345	115817	8625	345	
2	4	5	6	7	8	15678	1322	15678	194322	813178	345	1158178	8625	345	
2	9	0	0	0	0	150	2000	15	195	8125	390	12025	975	390	
2	9	9	0	0	0	150	2000	15	195	8125	399	12115	9975	399	
2	9	9	9	0	0	159	1100	159	1941	8134	399	12124	9975	399	
2	9	9	9	9	0	1599	1010	1599	19401	81349	399	121249	9975	399	
2	9	9	9	9	9	15999	1001	15999	194001	813499	399	1212499	9975	399	

diodes 1A4A2CR3, 1A4A2CR4 as a fine steering voltage. Transistor 1A4A2Q1 is the oscillator while 1A4A2Q2 regulates the source voltage in order to provide frequency stability. The output from the VCO is coupled through buffer 1A4A2U1 to mixer 1A4A2Q3 ((2) below) and driver 1A4A2Q5 ((5) below).
(2) Mixer and Pulse Generator. The 15.0 to 15.999 MHz signal from the VCO ((1) above) is applied to mixer 1A4A2Q3. The other input to the mixer is the 17 MHz reference signal from spectrum generator 1A4A1 (a above). The 1.001 to 2.0 MHz difference frequency output from 1A4A2Q3 is filtered by the 2 MHz low pass filter and amplified by 1A4A2U6. The sinewave output from 1A4A2U6 is formed into pulses by pulse generator 1A4A2U7 The output from 1A4A2U7 is applied to the inputs of the preset counter and the count filled detector ((3) below).
(3) Preset Counter and Preset Generator. The preset counter consists of three divide-by-10 counters (1A4A2U8, 1A4A2U9 and 1A4A2U10) and one divide-by-2 counter 1A4A2U11). With the selected $10 \mathrm{kHz}, 1$ kHz and 100 Hz FREQUENCY switches set to 000, the preset counter is divide-by-2000 counter. With the selected $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 HZ FREQUENCY switches set to a value other than 000, the counter will divide by 2000 minus the value set by the switches. If the selected $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 Hz FREQUENCY switches are set to 1,2 and 3 respectively, the output frequency of VCO 1A4A2Q1 ((1) above) is 15123 MHz (the setting of the selected FREQUENCY switches times 10 , plus 15 MHz). The output of the mixer and pulse
generator ((2) above) is 1.877 MHz (the difference between the VCO frequency and the 17 MHz reference signal. And, the preset counter will divide by 1,877 . The output from the preset counter will be a 1 kHz pulse. The operation of the preset counter is as follows:
(a) Assuming the selected $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 Hz FREQUENCY switches are set to 1,2 and 3 respectively, 1A4A2U8 will have the binary coded decimal equivalent of three present at the preset input; 1A4A2U9 will have the binary coded decimal equivalent of two present at the preset input; and 1A4A2U10 will have the binary coded decimal equivalent of one present at the preset input. When a data strobe pulse is received from preset generator 1A4A2U4, the divide-by10 counters are preset to the count that is present at their preset inputs.
(b) Divide-by-10 counter 1A4A2U8 has been preset to a count of three ((a) above). The output at pin 5 is high and the output at pin 12 is low. The output at pin 5 will be high for each odd count and low for each even count. The divide-by-10 counter will count on the trailing edge of each input pulse. After six input pulses, the count in 1A4A2U8 will be nine (preset of three, plus six counts). At the count of nine, the output at pin 12 will be high because of the nine count and the output at pin 5 will be high because the count is an odd number. On the trailing edge of the next input pulse, the outputs at pins 5 and 12 will both go low. When pin 12 goes low, 1A4A2U9 will advance one count. On the trailing edge of the next input pulse from pulse generator

1A4A2U7, divide-by-10 counter 1A4A2U8 will assume a count of one instead of the preset count, since a data strobe pulse was not received from preset generator 1A4A2U4. Divide-by-10 counter 1A4A2U8 will have an output at pin 12 after every 10 input pulses until preset by the next data strobe pulse ((c) below).
(c) Divide-by-10 counter 1A4A2U9 has been preset to a count of two ((a) above). The outputs at pins 5 and 12 are low. As described in ((b) above), 1A4A2U8 will have 7 outputs after 67 inputs from 1A4A2U7. After seven outputs from 1A4A2U8, the count in 1A4A2U9 will be nine (preset of two, plus seven counts). At the count of nine, the output at pin 12 will be high because of the nine count and the output at pin 5 will be high because the count is an odd number. On the trailing edge of the next input pulse to 1A4A2U9 (77 inputs to 1A4A2U8), the outputs at pins 5 and 12 will both go low. When pin 12 goes low, 1A4A2U10 will advance one count. On the trailing edge of the next input pulse (87 inputs to 1A4A2U8), 1A4A2U9 will assume a count of one instead of the preset count, since a data strobe pulse was not received from preset generator 1A4A2U4. Divide-by-10 counter 1A4A2U9 will have an output at pin 12 after every 10 input pulses (100 inputs to 1A4A2U8) until preset by the next data strobe pulse ((e) below).
(d) Divide-by-10 counter 1A4A2U10 has been preset to a count of one ((a) above). The output at pin 5 is high and the output at pin 12 is low. As described m ((b) and (c) above), 1A4A2U9 will have 8 outputs after 777 inputs to 1A4A2U8. After eight outputs from 1A4A2U9, the count in 1A4A2U10 will be nine (preset at one, plus eight counts). At the count of nine, the output at pin 12 will be high because of the nine count and the output at pin 5 will be high because the count is an odd number. On the trailing edge of the next input pulse to 1A4A2U10 (877 inputs to 1A4A2U8), the outputs at pins 5 and 12 will both go low. When pin 12 goes low, 1A4A2UII will advance one count. On the trailing edge of the next input pulse (977 inputs to 1A4A2U8), 1A4A2U10 will assume a count of one instead of the preset count, since a data strobe pulse was not received from preset generator 1A4A2U4. Divide-by-10 counter 1A4A2U10 will go high at pin 12 after the next nine input pulses (900 inputs to 1A4A2U8).
(e) The output from divide-by-two counter 1A4A2UII is high because the output from 1A4A2U10 went low after 877 inputs to 1A4A2U8 ((d) above). After 999 more inputs to 1A4A2U8 the count will be 1876. All of the divide-by- 10 counters will have a count of 9 . The outputs at pin 5 will be high because the count is an odd number and the outputs at pin 12 will be high because of the nine count. The output from divide-by-two counter 1A4A2U11 is still high because the output of 1A4A2U10
has not gone low. With the exception of the input that is connected to pulse generator 1A4A2U7, all of the inputs to count filled detector 1A4A2U3 are high. On the next output pulse from pulse generator 1A4A2U7, the count will be 1877 (the preset count) When the output from 1A4A2U7 goes high, it will put a high on the only input to 1A4A2U3 that is low and 1A4A2U3 will output a 50 nanosecond pulse. On the trailing edge of the pulse from 1A4A2U3 preset generator 1A4A2U4 will output a 75 nanosecond pulse. The output from 1A4A2U4 is coupled to phase detector 1A4A2U2 ((4) below) and to the data strobe inputs of the preset counter
(4) Phase Detector and Loop Filter. Phase detector 1A4A2U2 compares the output frequency of the preset counter ((3) above) with the 1 kHz reference signal from spectrum generator 1A4A1 (a above) and develops a DC output voltage that is proportional to the two signals. The output of the preset counter will be 1 kHz when the VCO is operating at the desired frequency If the output of the VCO is high, the output frequency of the preset counter will be less than 1 kHz . The output voltage from the phase detector will decrease, causing the operating frequency of the VCO to decrease. If the output of the VCO is low, the output frequency of the preset counter will be more than 1 kHz . The output voltage from the phase detector will increase, causing the operating frequency of the VCO to increase. The loop filter removes any 1 kHz components in the phase detector output and also determines the transient response of the loop.
(5) Output Divider. The output from buffer 1A4A2U1 ((1) above) is amplified by driver 1A4A2Q5. Divide-by-10 counter 1A4A2U5 divides the signal from 1A4A2Q5 and the 1.50 to 1.5999 MHz output signal is fed through the 155 MHz bandpass filter and emitter follower 1A4A2Q6 to translator 1A4A3 ((c) below).
c. Translator 1A4A3 (Fig. FO-3 and FO-20
(1) Voltage Controlled Crystal Oscillator. With the VFO control pulled out (on), +12 volts is applied to 21 MHz reference amplifier 1A4A3U1 disabling the amplifier. The same +12 volts turns voltage controlled crystal oscillator 1A4A3Q1 and switch 1A4A3Q3. Turning on 1A4A3Q3 enables amplifier 1A4A3U2. 1A4A3Q1 is a crystal controlled Colpitts oscillator operating In the frequency range of 20.995 to 21005 MHz . The control voltage from the VFO control is applied through control amplifier 1A4A3Q3 to the varactor diodes in the circuit to control the operating frequency of 1A4A3Q1. The output from 1A4A3Q1 is amplified by 1A4A3U2 and applied to the 19 MHz balanced mixer ((3) below).
(2) 21 MHz Reference Amplifier. With the VFO control pushed in (off), 1A4A3Q1 and 1A4A3U2 are
disabled and 21 MHz reference amplifier 1A4A3U1 is enabled. The 21 MHz reference signal from spectrum generator 1A4A1 (a above) is amplified by 1A4A3U1 and applied to the 19 MHz balanced mixer ((3) below).
(3) 19 MHz Balanced Mixer. The 21 MHz signal from the 21 MHz reference amplifier ((2) above) or the voltage controlled crystal oscillator ((1) above) is mixed with the 1.50 to 1.5999 MHz signal from low digit generator 1A4A2 (b above) in the 19 MHz balanced mixer. The difference frequency output is filtered by the 19.45 MHz bandpass filter and amplified by 1A4A3U3. Diodes 1A4A3CR5 and 1A4A3CR12 provide AGC to amplifier 1A4A3U3 to ensure a constant level 19.4001 to 19.50 MHz signal out. The 19.4001 to 19.50 MHz signal from 1A4A3U3 is applied to 81.25 MHz mixer 1A4A3Q11 (6) below.
(4) 2nd Local Oscillator. The 2nd local oscillator is a crystal controlled Colpitts oscillator operating at 80.75 MHz . The output from 2nd local oscillator 1A4A3Q7 is applied to 100 MHz mixer 1A4A3Q8 ((5) below) and through buffer amplifier 1A4A3Q9 to receiver/exciter 1A3 (para 2-4).
(5) 100 MHz Mixer. The 80.75 MHz signal from the 2nd local oscillator ((4) above) is mixed with the 20 MHz reference signal from spectrum generator 1A4A1 (a above) in 100 MHz mixer 1A4A3Q8. The sum frequency output is filtered by the 100.75 MHz bandpass filter and applied to 81.25 MHz mixer 1A4A3Q11 ((6) below)
(6) 81.25 MHz Mixer. The 100.75 MHz signal from the 100.75 MHz bandpass filter ((5) above) is mixed with the 19.4001 to 19.50 MHz signal from 1A4A3U3 ((3) above) in 81.25 MHz mixer 1A4A3Q11. The difference frequency output is filtered by the 81.25 MHz bandpass filter and applied to output mixer 1A4A3Q4 ((7) below).
(7) Output Mixer. The 81.25 to 81.3499 MHz signal from the 81.25 MHz bandpass filter ((6) above) is mixed with the 91.25 to 121.2499 MHz signal from VCO 1A4A5 (e below). The frequency of the 81.25 to 81.3499 MHz signal represents the setting of the selected $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 HZ FREQUENCY switches. The frequency of the 91.25 to 121.2499 MHz signal represents the setting of all of the selected FREQUENCY switches. Since the $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 Hz frequency components are present in both signals, they will cancel in the output mixer when the output of the synthesizer is at the correct frequency (normal operating condition). Therefore, the signal from output mixer 1A4A3Q4 will only represent the setting of the selected $10 \mathrm{MHz}, 1 \mathrm{MHz}$ and 100 kHz FREQUENCY switches, and will change in 100 kHz steps. The 10.0 to 39.9 MHz difference frequency signal from output mixer 1A4A3Q4 is amplified by the broadband amplifier and applied to VHF divider 1A4A4 (d below).
d. VHF Divider 1A4A4 (Fig. FO-3 and Fig. FO-21.
(1) Broadband Amplifier, Divide-by-Four Counter, and Driver. The 10.0 to 39.9 MHz signal from translator 1A4A3 (c above) is amplified and applied to divide-byfour counter 1A4A4U2. The 2.5 to 9.975 MHz signal from 1A4U2 is inverted by driver 1A4A1U1 and applied to the inputs of the preset counter and the preset generator ((2) below).
(2) Preset Counter, Carry Detector and Preset Generator. The preset counter and preset generator are similar to the preset counter and preset generator in the low digit generator ($b(3)$ above). The major differences are a carry detector is used when the selected 100 kHz FREQUENCY switch is set to 0 and divide-by-four counter 1A4A4U7 is preset by the 10 MHz preset gate instead of directly from the selected 10 MHz FREQUENCY switch.
(a) Preset Counter. The preset counter consists of two divide-by-10 counters (1A4A4U3 and 1A4A4U6) and one divide-by-four counter (1A4A4U7). The counter will divide by the number the selected 10 $\mathrm{MHz}, 1 \mathrm{MHz}$ and 100 kHz FREQUENCY switches are set at plus 100 table 2-1).
(b) Carry Detector. When all four 100 kHz preset lines are programmed to a 0 state by the front panel switches (corresponding to a dial setting of 0 on the selected 100 kHz FREQUENCY switch), a special carry signal must be generated to program the counters to the correct division ratio. Mathematically, this is necessary because a dial setting of zero requires 1A4A4U3 to divide by zero-an impossible operation. The count is corrected by programming 1A4A4U3 to divide-by-ten and then subtracting one count from the next decade counter. Note that this is the same mathematical operation of borrowing when, for example, one subtracts nine from ten. Quad two input NAND gate 1A4A4U4 is connected as a quad inverter with a common output. One of the four 100 kHz input lines is connected to each section of the gate. The output of 1A4A4U4 is inverted by 1A4A4U5A. If all four inputs to 1A4A4U4 are zero, the output of 1A4A4U4 will be in a one state and the 1A4A4U5A output will be a zero. If any of the 100 kHz inputs are in a one state, the 1A4A4U5A output will also be a one.
(c) Count Filled Detector. The inputs count filled detector 1A4A4U8C, 1A4A4U9 are similar to the inputs to count filled detector 1A4A3U3 described in $b(3)(e)$ above. However, the input at pin 5 will always be high if the selected 100 kHz FREQUENCY switch is set to zero. If the selected 100 kHz FREQUENCY switch is set to a number other than zero, the input at pin 5 will follow the output at pins 5 and 6 of 1A4A4U6. The output from the count filled detector is a 400 nanosecond positive pulse.
(d) Preset Generator. Preset generator 11 5A4A4U10 provides a 200 nanosecond negative data
strobe pulse when it is triggered by the pulse from the count filled detector ((c) above)
(3) Phase Detector. The 100 kHz reference signal from spectrum generator 1A4A1 (a above) is applied to divide-by-four counter 1A4A4UU11. The 25 kHz output from 1A4A4U11 is applied to phase detector 1A4A4U12. The phase detector compares the nominal 25 kHz output frequency of the preset counter ((2) above) with the 25 kHz input from 1A4A4U11 and develops a DC output voltage that is proportional to the two signals. The output from the phase detector is coupled to VCO 1A4A5 (e below).
e. VCO 1A4A5 (Fig FO-3 and Fig. FO-11).
(1) Band Oscillators. The selected 10 MHz FREQUENCY switch enables one of the three band oscillators through one of the three transistor switches. The band oscillators are Colpitts oscillators similar to voltage controlled oscillator 1A4A2 (b(1) above). Band 0 oscillator 1A4A5Q7 operates over a frequency range of 91.25 to 101.2499 MHz Band 1 oscillator 1A4A5Q7 operates over a frequency range of 101.25 to 111.2499 MHz . And, Band 2 oscillator 1A4A5Q8 operates over a frequency range of 111.25 to 121.2499 MHz . Coarse frequency tuning is provided by the action of the course frequency voltage from the selected 10 MHz FREQUENCY switch. Fine frequency tuning is provided by the DC voltage from VHF divider 1A4A4 ($d(3)$ above). The output from the enabled band oscillator is coupled through amplifier 1A4A5Q11, 1A4A5Q12 to translator 1A4A3 (c above) and through amplifier 1A4A5Q9, 1A4A5Q10 and the 91 to 122 MHz bandpass filter to receiver/exciter 1A3 para 2-4).
(2) Binary Coded Decimal Converter. The BCD converter consists of two transistor switches, 1A4A5Q1 and 1A4A5Q2, that convert the ground signal from the selected 10 MHz FREQUENCY switch to tens complement binary coded decimal. The output from the BCD converter is applied to the 10 MHz preset gate (d(2) above) in VHF divider 1A4A4.
f. Local Oscillator Blanker (Fig. FO-23). The local oscillator blanker protects the power amplifier from transients caused by a frequency change while transmitting. When the selected 1 MHz FREQUENCY switch setting is changed, the synthesizer may change frequency by several MHz while the switch is momentarily open. If this occurs while transmitting, it would result in a large transient that could damage RF power amplifier 1A7A1.

When the setting of the selected 1 MHz FREQUENCY switch is changed, the "preset 201 MHz " frequency control line will change from either:
logical "0" (approximately 0.2 volts) to
logical "1" (approximately 3 volts) state
or
logical "1" to logical "0" state

In the first case, the positive going signal is formed into a 100 to 200 millisecond positive differentiated pulse. The positive differentiated pulse turns switch 1A4A6Q2 on Switch 1A4A6Q2 turns switch 1A4Q6Q1 on, generating a blanking pulse. In the second case, the negative going signal is formed into a 100 to 200 millisecond negative differentiated pulse The negative differentiated pulse turns switch 1A4A6Q1 on, generating a blanking pulse In either case, the blanking pulse is applied to spectrum generator 1A4A1 (a above), and disables the 3rd local oscillator signal.

2-10. Filter Module 1A5 Detailed Functional Operation (Fig, FO-4)

a. Filtering. The filter module provides low pass filtering in transmit mode and band pass in receive mode. The filters have been divided among three different boards. Board 1A5A1 has the low pass filters for the odd number channels. Board 1A5A2 has the low pass filters for the even number channels. Board 1A5A3 has high pass filters. Only the low pass filters are used in the transmit mode. The high pass filters are used, along with the low pass filters, for band pass filtering in the receiver mode. Correct filtering for each band is accomplished automatically when the front panel frequency control switches are set. Inactive filters, for any given band, are switched to ground through a 10 ohm resistor. This discharges the filter and prevents unwanted interaction with active filters. Table 2-2 lists the filter band numbers and their corresponding frequency ranges.

Table 2-2. Band Numbers and Frequency Ranges.

BAND NUMBER	FREQUFNCY RANGE
1	16 to $19999 \mathrm{MH}_{4}$
2	20 to 29999 MHz
3	30 to 39999 MHz
4	40 t 059999 MHz
5	60 to 89999 MHz
6	90 to 129999 MHz
7	1.90 to 199999 MHz
8	200 to 299999 MHz .

b. Filter Selection. Correct filter selection for the band in use is setup through wafer switches driven by a DC motor. The motor (B1) is mounted on the Motor Control Board 1A5A4. Motor control is accomplished with an "open seeking" circuit comprised of relay 1A5A4K1 and wafer switch 1A5A4S1. When changing the 1 MHz or 10 MHz switch of the selected frequency changes the band, relay 1 A 5 A 4 K 1 is energized thru 1A5A4S1. The now closed contacts, 5 and 9 , of 1A5A4K1 supply +12 VDC to motor 1A5A4B1. The motor simultaneously rotates the wafer switches on
each of the four filter module boards. Wafer switch 1A5A4S1 rotates until the open position reaches the hand position supplying the +12 V . At that point +12 V is removed from switch 1A5A4-8 and relay 1A5A4K1 deenergizes. The 1A5A4B1 motor input switches from + 12 V to ground through normally closed contacts, 1 and 9 , of 1A5A4K1. This quickly stops the motor and prevents excessive overshoot. Diode 1A5A4CR1 prevents motor back emf from keeping 1A5A4K1 energized. With the motor stopped, all wafer switches are set to provide the correct filtering for the selected band. A filter, capacitors 1A5A4C1, 1A5A4C2 and inductor 1A5A4L1, prevents noise on the motor input line.
c. Receiver Protector. Diodes 1A5A4CR18 and 1A5A4CR19 form a shunt power limiter to protect the receiver front end from excessive power input.
d. Voltage ALC Detector. The ALC (Automatic Level Control) detector is the sensing circuit for the ALC circuitry that limits the peak power output to 100 watts. It provides an output reference voltage to the receiver/exciter for use in the IF stages for output level control. The voltage ALC detector consists of a voltage divider (1A5A4R25 and 1A5A4R26) and RF detector (1A5A4CR17), and emitter followers 1A5A4Q2 and 1A5A4Q3. Capacitor 1A5A4C28 filters out any audio modulation and variable capacitor 1A5A4C24 tunes the circuit for best performance over the transceiver frequency range.
e. ACC Detector. The ACC (Automatic Carrier Control) detector provides a carrier sampling to the ACC circuitry for control of AM power output. The ACC detector derives its output by sampling the signal at the antenna connector of the filter module. A voltage divider (1A5A4R4 and 1A5A4R5), a rectifier (1A5A4CR6 and 1A5A4CR12), and a filter network (1A5A4C5,

1A5A4L2 and 1A5A4C6) make up the ACC detector. Variable capacitor 1A5A4C13 tunes the circuit for heat operation. The detector output at this point has a fast rise/fall time. To maintain a constant carrier level the detector output is fed to an averaging network on the receiver/exciter sideband generator board.
f. Level Detector. A forward power level and a reflected power level (VSWR) are the two level detector outputs. The forward power level is obtained by sampling the signal at the antenna connector of the filter module. The signal level is dropped by a voltage divider 1A5A4R1 and 1A5A4R2), and developed by detector 1A5A4CR5. A filter network (1A5A4C3, 1A5A4R3 and 1A5A4C4) then smoothes the signal for use by the front panel power monitor. The reflected power level is used to protect the RF power amplifier. The level of reflected power (VSWR) is derived inductively (1A5A4T1 and 1A5A4R20) from the signal to the antenna connector on the filter module. The VSWR is developed by diode 1A5A4CR16 and filter network 1A5A4C22, 1A5A4L4 and 1A5A4C23. If the VSWR is less than 1.7 to 1 no output (VSWR ALC) is generated.
g. Keyline. The filter module also contains some of the components necessary for transmit keying. Refer to paragraph 4-1.

2-11. Antenna Coupler Control Unit 1A2 Detailed Functional Operation (Fig. 2-4).

This unit contains the controls and indicators necessary for the operator to check, select and monitor antenna tuning. Meter 1A2M1 indicates either reflected or forward power as selected by REFL FWD POWER MONITOR switch 1A2S1. The TUNE START switch initiates a coupler tune cycle when depressed if the radio set has been set to CPLR TUNE KW. The COUPLER STATUS indicators provide Antenna Coupler operating condition indications.

Section III. ANTENNA COUPLER CU-2229/URC-92 FUNCTIONAL OPERATION

2-12. Simplified Overall Operation

The CU-2229/URC-92 antenna coupler is located near the antenna base and provides automatic antenna tuning. Operation is controlled by the antenna coupler control mounted in the front panel of the RT1277/URC92 transceiver. Automatic tuning is accomplished by a variable inductor and a variable capacitor. Auxiliary, fixed value, capacitive circuits are also switched in and out as necessary by relays. When automatic tuning is initiated at the control unit, a tuning cycle begins The green READY light, on the control, illuminates when the cycle is complete.

NOTE

 Any time the red FAULT lightilluminates, it is an indication that
the antenna coupler should be tuned

In a tune cycle, a demodulated RF is supplied to phase and amplitude detectors. These detectors generate error signals proportionate to the impedance and phase differences of the RF line. The error signals are differentiated and amplified to drive the DC motors that control 2C1 and 2L4.

Figure 2-4. Antenna Coupler Control Unit Schematic Diagram.

2-13. Detailed Theory of Operation (Fig. FO-5 and Fig. FO-32)

To begin a tune cycle, the RT-1277/URC-92 mode switch must be set to CPLR TUNE KW. The CPLR TUNE KW position provides the ground necessary to energize relay 2K1. When 2 K 1 is energized, +28 VDC (CPLR tune +) is present at one side of the antenna coupler control TUNE START switch. Depressing TUNE start returns the +28 VDC (CPLR tune +R) to the antenna coupler control logic board 2A1 pin A. The +28 VDC at 2A1-A generates a keying signal at 2A1-7, a 2 C 1 home pulse at 2A1-13 and a 2L4 home pulse at 2A1-R. A ground is supplied, by 2A1-6, to 1A2-3 which lights the COUPLER STATUS TUNING indicator. Also, a ground is present at 2A1-15 which energizes 2K4. Normally $2 \mathrm{~K} 4-9$, 1 with $2 \mathrm{~K} 4-10,2$ shunt the RF around the 3 dB attenuator. In a tune cycle, with 2 K 4 energized, the 3 dB attenuator is placed in series in the RF line. The 2A1 home pulses enter the phase and amplitude control board 2A2 on pin 6 for 2C1 and pin R for 2L4. The home pulses set 2A2 flip-flops to provide a homing signal at 2A2-5 for 2C1 and at 2A2-V for 2 L 4 . Simultaneously, the transceiver produces an RF output that is sensed in the phase and amplitude detector
board 2A4. Board 2A4 develops phase (2A4-2), amplitude (2A4-5) and reflected power (2A4-3) error signals. Each of these error signals is referenced to the 10 volt line. The reflected power signal goes to control logic board 2 A 1 pin 15. It is used as a control signal for many AN/URC-92 operations. Phase error between $2 \mathrm{~A} 2-2$ and 2A2-3 is processed and a corrective drive signal is produced. The home drive is removed and the corrective drive takes over as soon as the phase becomes positive. The corrective drive signal for phase occurs at either 2A2-4 or 2A2-5 depending upon the 2C1 adjustment necessary. Amplitude error between 2A2-16 and 2A2-U is processed and a corrective drive signal produced for 2L4 adjustment. Again the home drive signal is removed and the corrective drives takes over, at either 2A2-17 or 2A2-V, when the phase goes positive. The phase and amplitude corrective drive signals oscillate until 2C1 and 2L4 are tuned to minimum reflected power. At that point, 2A2 causes a motor braking action at 2A2-T and 2A212. The servo motor control (2A6) receives the drive signals from 2A2 and amplifies them to drive 2M1 and 2M2 as necessary. Motors 2M1 and 2M2 then adjust 2C1 and 21L4
respectively to the correct position for minimum reflected power When reflected power has been adjusted below the threshold, control logic board 2A1 ends the tune cycle The COUPLER STATUS READY Indicator is illuminated by a ground at 2A1-N and the AN/URC-92 is ready for transmitting

2-14. Control Logic Board 2A1 Detailed Functional Operation

(Fig FO-6 and Fig FO-33)
Board 2A1 provides control co-ordination for the automatic tuning cycle The logic outputs of 2A1 provide initiation, cycling, completion and fault signals The control logic board Is divided into eight functional blocks which will he discussed Individually The eight functions are Tune flip-flop, 50 ohm flip-flop, Fault flip-flop, Time Delay, C3-C6 control, Reflected Power Amp, RF Detector, and Lamp Driver
a. Tune Flip-Flop The Tune flip-flop is comprised of 2A1Q10, 2AIQ15, 2A1U3B-C-D, 2A1U4C-D and all related components When the unit is first turned on, 2A1U3B-6 is at a logic 0 due to circuit loading. Depressing the TUNE START pushbutton on the antenna coupler control (1A2) applied + 28 VDC to 2XA1-A The +28 VDC turns on 2A1Q15, causing a logic 0 at the collector, which initiates a tune cycle The logic 0 initiate signal resets 2AIU3C-8 causing a logic 1 at 2A1U3B-6 Because of this, 2AIQ10 turned on and ground the Interlock (2XA1-7) which keys the transmitter on in am The 2AIU: 3B-6 output is also fed to the Lamp Driver to light the COUPLER STATUS TUNING Indicator The same logic 0 initiate signal is used in all the other functions except the [,amp l)river It also provides the 2C1 home (2XA1-13) and 2I,L4 home (2XA1-R) outputs The Tune FF is reset, when the tune cycle ends, by a logic 1 at 2AIU4C-9 from the Reflected Power Amp which produces logic 0 at 2AIU4C-8 That logic 0 resets the Fault FF and the Tune FF which extinguishes the COUPILER STATUS TUNNG Indicator At the same time 2A1U41)-11 is at a logic 1 which is fed to the Lamp Driver to light the COUPLER STATUS REAI)Y indicator
b. 50 Ohm Flip-Flop The 50 Ohm FF includes 2AIQ13, 2A1Q19 1A1U6A-B C-D, 2A1U4C and associated components When a tune cycle is Initiated, a logic 0 is placed at 2AIU6C-8 and sets the FF with a logic 1 at 2AIU6D-11 The logic 1 triggers 2A1Q14 to provide a ground, for energizing 2K4, at 2XA1-15 Energizing 2K4 switches the 3 dB attenuator in series with the off transmission line When reflected power drops below threshold or RF power is not sensed by the RF Detector, the 50 Ohm FF is reset This causes 2A1Q14 to cease conduction and 2 K 4 deenergizes, taking the 3 dB attenuator out of the transmission line If the reflected power is below threshold, 2A1Q3
of the Reflected Power Amp develops logic 0 at U6A-1 Gate 2A1U6A then establishes logic 1 at 2A1U6B-4 and 2XA1-14, which is the $50(+)$ output. Gate 2A1U6B generates logic 0 at 2AIU6C-9 to reset the FF If RF is not present during a tuning cycle, the FF also resets but is set again by 2A1Q19 and 2A1U5C. The 50 Ohm FF is also set, and triggers 2A1Q14 if any of the following conditions occur the Time Delay running out or variable inductor 2L4 reaching L max will set the FF thru 2A1CR15 and/or 2A1CR16 respectively. Also, some frequency-impedance combinations may cause the FF to reset and the tuner will not tune. This situation occurs if reflected power rises above threshold during the same tune cycle Then an RC network, 2A1R29 and 2A1C36, charges to trigger 2AIQ13 Then 2A1Q13 established a logic 0 at 2A1U6D-13 to set the FF, 2A1U6D1 1, at logic 1 and trigger 2A1Q14 on. With that the 3 dB attenuator Is again switched in to prevent transmitting into a possible open or short circuit.
c. Fault Flip-Flop. The Fault FF consists of 2A1U4A-B, 2A1U5A-B-D, 2AICR12, 2A1CR13 and their corresponding circuits When power is first applied (transceiver turned on), circuit loading causes 2A1U4B-6 to be logic 0 and set the FF The logic 1 at 2alU4A-3 Is then fed to the Lamp Driver to light the COUPLER STATUS FAULT indicator. When the mode switch is set to CPLR TUNE KW, +10 V is switched to 2XA1-2 thru 2 K 1 . The +10 V is applied to an RC network and voltage regulator, in the Fault FF to generate a single logic 1 pulse This pulse is inverted by 2A1U5D and the logic 0 makes 2A1U4B-6 a logic 0 The logic 0 is also fed to Tune FF 2A1U3D-13 to extinguish the CPLR TUNE READY indicator The output of 2A1U4A-3 is then at logic 1 and fed to the Lamp Driver to light the COUPLER STATUS FAULT indicator The Fault FF is also set by a logic 0 from 2A1U5A-11. A logic 0 from 2A1U5A is caused when two conditions are met First, the reflected power is above threshold and Reflected Power Amp 2A1Q3 causes a logic 1 at 2A1U5A-13. Second, Tune FF 2A1U3C-8 produces a logic 1 at 2A1U5A-12, indicating tuning is not in process This ensures. the COUPLER STATUS FAULT indicator will light any time timing is required due to antenna or frequency change If the Time Delay runs out, the Fault FF will he set with a logic 0 from 2A1CR20 to 2A1U4B6.
d. Reflected Power Amp Components 2A101.2A1Q1, 2A1Q2, 2A1Q3. 2A1Q4, 2A1Q5, 2A1CR1, 2A1CR2 and associated resistors and capacitors make up the Reflected Power Amp From 2X1A-3 a DC voltage, proportionate to reflected power on the transmission line, is fed to 2A1U1-4. This signal Is referenced to +10 VDC and 2AIU1 develops its output from that reference. The output at 2A1U1-10, along with a gain input (2XA1-8) from the antenna
coupler control, controls 2A1Q1 operation The gain input establishes the reflected power threshold that causes 2A1Q1 conduction Transistor 2A1Q2 converts the 2A1Q1 output into an on/off output characteristic of reflected power When 2A1Q2 conducts, it represents reflected power above threshold With 2A1Q2 off, reflected power Is below threshold and a positive voltage is felt at the base of 2A1Q3 Transistor 2A1Q3 conducts when reflected power is below threshold and its collector is at ground The $50(-)$ output of board 2A1, at 2XA1-8, is taken from the collector of 2A1Q3 Also, 2A1Q3 drives 2A1Q4 Transistor 2A1Q4 and associated components establish a short time delay The time delay prevents brief intervals of reflected power drop from terminating a tuning cycle The 2A1Q4 output operates 2A1Q5 to provide logic outputs characteristic of reflected power level A logic 1 from 2A1Q5 indicates reflected power below threshold The logic 1 is fed to Tune FF 2A1U4C-9 to terminate the tune cycle Diode 2AICR1 and resistor 2A1R7 in the Reflected Power Amp cut it off during receive mode This prevents keying spikes from causing the CPLR STATUS FAULT indicator to come on when unkeying.
e. Time Delay. The time delay consists of 2A1Q16, 2AIQ17, 2AIQ18 and their related components Variable resistor 2A1R46 adjusts the length of the time delay The normal time delay setting should be approximately 40 seconds Time Delay operation is as follows When a tune cycle is initiated, the collector of 2A1Q16 rises to near +VDC Capacitor 2A1C40 begins charging thru 2A1R47 and the anode of 2A1Q17 increases toward +5 VDC Transistor 2A1Q17 is a programmable unifunction transistor that fires when the anode voltage reaches the voltage applied to the gate Voltage divider 2A1R49 and 2AIR50 sets the gate voltage at approximately +5 VDC When 2A1Q17 fires, the positive pulse triggers 2A1Q18 and 2A1Q18 collector produces a logic 0 . The logic 0 resets the Tune FF thru 2A1CR21 and the Fault FF thru 2A1CR20. This terminates the tune cycle and lights the CPLR STATUS FAULT indicator Diode 2A1CR26 places a logic 0 on the L max line to terminate the L force function at the end of the time delay.
f. RF Detector. The RF Detector is comprised of 2A1Q8 and its associated components. When RF Is sensed on the transmission line, a DC signal is present at 2XA1-B This signal is coupled into the RF detector thru an RC network, 2A1R23 and 2A1C34 The RC network allows 2A1Q8 to trigger on only when a constant DC level is present Erratic levels and spikes are shunted to ground through 2A1C34. This prevents noise from turning the antenna tuner off when the transmitter is first keyed on when 2A1Q8 triggers on, a logic 0 is generated at the collector and inverted by 2A1U3. The logic 1 from 2A1U3-3 is fed to the Fault FF (2A1U4C-10) and the 50 ohm FF (2A1U6B-5).
g. C3/C6 Control Assembly. Components 2A1Q6, 2A1Q7, 2A1U2 and their associative circuitry make up the C3/C6 control Capacitor 2C3 is switched in and out of the circuit in the following way. Each time the time delay runs out, 2A1U2C inverts the logic 0 from Time Delay 2AIQ18 to logic 1. The logic 1 (2A1U2-8) then triggers 2A1Q6 to provide a ground at 2XA1-17 which energizes bistable relay 2A5K2. Bistable relay 2A5K2 is the control for 2K3 which controls 2C3A-B Control of 2C6 also utilizes a bistable relay, 2A5K1 It is controlled by 2A1U2A-B-D The L max signal, a logic 0 , is produced when 2 L 4 reaches maximum inductance. This logic 0 comes in on 2XA1-T to 2A1U2D and is inverted. The logic 1 at 2A1UD-11 then triggers 2A1Q7 to provide a ground at 2XA1-V. That ground toggles 2A5K1 into its opposite state. This action either switches 2C6 in or out across 2L4, depending on its previous condition. If 2C6 is switched across the 2L4, +28 VDC is also switched on to 2XA1-U. This +28 VDC is reduced to a logic 1 level by voltage divider 2A1R19 and 2A1R20. The logic 1 is then fed to 2A1U2B-5 and a logic 0 is then present at 2A1U2B-6. That logic 0 is inverted by 2A1U2D and again 2A1Q7 is triggered Bistable relay 2A5K1 is toggled into its opposite state and 2C6 is either switched in or out across 2 L 4 . It should be noted that if 2 L 4 reaches L min and 2 K 2 is not energized, 2A5K1 will not be toggled. Also, if a tune cycle is initiated, 2A1U2A has a logic 0 output. At this time, if 2C6 is across 2L4, it will be removed.
h. Lamp Driver. The three CPLR STATUS indicators, on the antenna coupler control, are controlled by 2A1Q9, 2A1Q11 and/or 2A1Q12. These lamp drivers are turned on by logic signals at the appropriate times. The CPLR STATUS FAULT lamp driver is 2A1Q12. It is triggered on anytime the Fault FF has a logic 1 at 2A1U4A-3 Lamp driver 2A1Q11 lights the CPLR STATUS READY indicator. This happens with a logic 1 from the Tune FF at 2A1U4D11 CPLR STATUS is lit by 2A1Q9 with a logic 1 from Tune FF 2A1U3B-6.

2-15. Phase and Amplitude Control Board 2A2 Detailed Functional Operation (Fig FO-7 and FO-34

Board 2A2 processes inputs from Phase and Amplitude Detector 2A4 to provide drive signals for Servo Motor Control 2A6. Thirteen functions are contained on 2A2. These functions are: Phase Preamp, Phase Level Changer, Phase Positive Logic Generator, C1 Home-Flip-Flop, C1 Drive Inhibit, Phase Servo Preamp, Amplitude Preamp, Amplitude Level Changer, L4 Home Flip-Flop, L4 Force Flip-Flop, L4 Drive Inhibit, Amplitude Servo Preamp and Phase/Amplitude Brake.
a Phase Preamp. The Phase Preamp consists of differential amplifier 2A2U1, 2A2CR1, 2A2CR2 and related components. A +10 VDC reference is applied to 2A2U1-4. The 2A2U1-5 input is a DC level proportionate to phase angle. The 2A2U1-10 output is referenced at a +10 VDC level which is the null output level. When phase angle goes negative, 2A2U1-10 generates a corresponding output level below +10 VDC. If phase angle is positive, $2 \mathrm{~A} 2 \mathrm{U} 1-10$ is at a corresponding level above +10 VDC Operational levels of 2A2U1-10 are between ground and +28 VDC.
b. Phase Level Changer. Components of this function are 2A2Q1, 2A2Q2, 2A2Q3 and associated circuitry. An input, to the Phase Level Changer, above +10 VDC controls 2A2Q1 conduction Transistor 2A2Q1 output, in turn, controls 2A2Q3 which establishes a drive signal to the Phase Servo Preamp positive drive. Also 2A2Q3 provides an output to the Phase Positive Logic Generator. If the Phase Level Changer input is below + 10 VDC, 2A2Q2 conducts to provide a drive signal to the Phase Servo Preamp negative drive.
c Phase Positive Logic Generator. Transistor 2A2Q4 functions as a logic level generator. When triggered by the Phase Level Changer, it establishes a logic level 0 . This logic 0 indicates a positive phase angle to board 2A2 flip-flop functions.
d. C1 Home Flip-Flop. The C1 Home flip-flop is comprised of 2A2U2A-B-C, 2A2Q5, 2A2CR3, 2A2CR4, 2A2CR5 and associated components When power is first applied, this FF resets and 2A2U2A-3 is at logic 0. A C1 home signal, logic 0 at 2XA2-6, to 2A2U2A-2 sets the FF. The logic 1 at 2A2U2A-3 then triggers Phase Servo Preamp 2A2Q7 to provide a drive signal at 2XA25. The same logic 1 is used by the C1 Drive Inhibit function. The C1 Home FF is reset (home cycle terminated) by logic 0 on the collector of 2A2Q4 or logic 0 on the C min line. In other words, the capacitor will be driven toward maximum until a positive phase angle is detected or until the capacitor reaches maximum capacity A positive phase angle resets the C1 Home FF by a logic 0 at 2A2U2B-5 C max resets the FF by applying a logic 0 to 2A2U2A3 thru 2A2CR7. The C max line also shorts out the output to 2A2Q7 through 2A2CR6. This action is required because the phase may still be negative when 2C1 reaches maximum capacitance and, although the C1 home function is terminated the negative phase would try to drive the capacitor beyond the end stop. Diode 2A2CR3 shorts out the positive phase drive to 2A2Q6 during the interval of the C 1 home signal. This prevents the initial turn on of the transmitter from generating a positive phase angle and causing 2A2Q7 and 2A2Q6 to be turned on simultaneously. Diode 2A2CR4 resets the C1 Home FF when the capacitor reaches minimum capacitance and forces the capacitor toward maximum. Diode 2A2CR5 shorts out the positive phase drive during the time
interval when C1 mm pulse exists. If this action were not taken, and phase were positive when 2C1 reached minimum, C1 Home FF would be set and 2A2Q6 and 2A2Q7 would be turned on at the same time Diode 2A2CRII is connected to the $50(-)$ line and removes the drive from 2A2Q7 when the reflected power falls below the threshold If the unit is homing and the 50 ohm threshold point occurs before a positive phase angle occurs, the home drive will be terminated by 2A2CR11. Variable capacitor 2C1 will overshoot and the resultant positive phase angle will reset the C1 Home FF. However, the driven elements have come to rest and slight servo action will correct the phase error to zero
e. C1 Drive Inhibit. Gate 2A2U2C, 2A2Q5, 2A2CR8 and associated resistors make up the C1 Drive Inhibit. The C1 home signal and a C1 Home FF reset, logic 0 , causes a logic 1 at 2A2U2C-8. The logic 1 triggers 2A2Q5 to short out the drive signal from the Phase Level Changer during the home cycle. This action is necessary to prevent driving 2A2Q6 while 2A2Q7 is driving during the home cycle. Transistor 2A2Q5 is also utilized to remove the drive from the phase servo during intervals when reflected power is below threshold. This is accomplished by the 50 (+) signal triggers 2A2Q5 through 2A2CR8 and 2A2R21.
f. Phase Servo Preamp. The Phase Servo Preamp contains 2A2CR6, 2A2CR9, 2A2CR10, 2A2CR11, 2A2Q6, 2A2Q7 and required resistors. A positive phase signal triggers 2A2Q6 to supply a drive signal at 2XA2-4 A negative phase signal triggers 2A2Q7 to provide a drive signal at 2XA2-5 Transistor 2A2Q6 is cutoff, when reflected power is below threshold, through 2A2CR9. Similarly, 2A2Q7 is cutoff through 2A2CR10 Cutoff 2A2Q7 is also accomplished through 2A2CR6 at C max or through 2A2CR11 by a 50 (-) signal at 2XA210
g. Amplitude Preamp. The Amplitude Preamp is comprised of 2A2U3, 2A2CR20, 2A2CR21 and associated components A + 10 VDC reference is applied to 2A2U3-4. The 2A2U3-5 input is a DC level proportionate to impedance magnitude. The 2A2U3-10 output is referenced at a +10 VDC level which is the null output level. When impedance is above 50 ohms, a negative voltage is applied to 2A2U3-5 Conversely, impedance below 50 ohms means a positive input to $2 \mathrm{~A} 2 \mathrm{U} 3-5$. With a positive at 2A2U3-5, the output of 2A2U3-10 goes to a corresponding level above +10 VDC. With a negative input to 2A2U3-5, 2A2U3-10 provides a corresponding output below +10 VDC. Operational levels of 2A2U3-10 are between +28 VDC and ground.
h. Amplitude Level Changer. The Amplitude Level Changer includes 2A2Q10, 2A2Q11, 2A2Q12 and
related components. An input above + 10 VDC, to the Amplitude Level Changer, controls 2A2Q10 conduction Transistor 2A2Q10 then regulates 2A2Q12 which generates a drive signal to the Amplitude Servo Preamp positive drive. If the Amplitude Level Changer input is below + 10 VDC, 2A2QII conducts to establish a drive signal to the Amplitude Servo Preamp negative drive.
i. L4 Home Flip-Flop. Diodes 2A2CR14, 2A2CR15, 2A2CR17, gates 2A2U4A-B and associated components make up the L4 Home flip-flop. A logic 0 is established at 2A2U4A-3, by 2A2C32, when power is first applied. An L4 home signal, logic 0 at 2XA2-14, to 2A2U4A-2 sets the FF for logic 1 at 2A2U4A-3. Amplitude Servo Preamp transistor 2A2Q14 is triggered by the logic 1 to generate a drive signal at 2XA2-V. At the same time, the logic 0 at 2A2U4B-6 is fed to L4 Drive Inhibit. The 2A2U4A-3 logic 1 is maintained until L 4 mm is achieved. Either an L minlogic 0 or positive phase angle logic 0 applied to 2A2U4A-3 resets the L4 Home FF.
j. L4 Force Flip-Flop. The L4 Force Flip-Flop consists of 2A2CR12, 2A2CR16, 2A2U4C-D, 2A2U5B-C-D and related components. When power first comes on, 2A2C31 causes the FF to reset with logic 0 at 2A2U4C-8. A reset also occurs with an L4 Home signal. This logic 0 signal is applied to $2 \mathrm{~A} 2 \mathrm{U} 4 \mathrm{C}-8$ through 2A2CR12. It is necessary to prevent L4 Home and L4 Force flip-flops from being on simultaneously. The FF is not set, logic 1 at 2A2U4C-8, unless 2C1 reaches max and 2 L 4 reaches min and an untuned condition still exists. Since both 2 C 1 and 2 L 4 have reached limits, a force function is required to drive 2 L 4 toward maximum. This action is necessary to create a positive phase angle so tuning can continue. The C max and L mm logic 0 signals are applied to 2A2U5B after being inverted by either 2A2U5C or 2A2U5D. The 2A2U5B-6 logic 0 is applied to 2A2U4C-9 and sets the L4 Force FF. The logic 1 on 2A2U4C-8 is fed to the Amplitude Servo Preamp to drive 2L4 toward maximum inductance. When a positive phase angle occurs, L4 Force FF will be reset by logic 0 through 2A2CR16 to 2A2U4C-8. If the force function continues until L max, the FF will be reset by logic 0 through 2A2CR24 to 2A2U4C-8.
k. Drive Inhibit. Gate 2A2U5A, diode 2A2CR25, transistor 2A2Q15 and associated resistors comprise this circuit. If either L4 Home FF or L4 Force FF is set, then 2A2U5A-3 has a logic 1 output. The logic 1 triggers 2A2Q15 to short out any drive signals to the Amplitude Servo Preamp. Transistor 2A2Q15 is also triggered through 2A2CR25 with a logic 1, 50 (+) signal. Again, the drive signals to the Amplitude Servo Preamp are shorted out. This action stops the drive to the servo preamp anytime reflected power is below threshold.
I. Amplitude Servo Preamp. Contained in the Amplitude Servo Preamp are 2A2CR22, 2A2CR23, 2A2CR27, 2A2CR28, 2A2CR30, 2A2Q13, 2A2Q14 and
associated circuitry. A positive amplitude signal triggers 2A2Q13 to provide a drive signal at 2XA2-17. A negative amplitude signal triggers 2A2Q14 to supply a drive signal at 2XA2-V. Transistor 2A2Q14 is cutoff, terminating the L4 home function, through 2A2CR30 when a 50 ohm point is detected. Similarly, 2A2Q14 is cutoff at L min through 2A2CR23 and by an inhibit signal through 2A2CR27. Transistor 2A2Q13 is cutoff at L max through 2A2CR22 and by an inhibit signal through 2A2CR26
m. Phase/Amplitude Brake. The Phase/Amplitude Brake is made up of 2A2CR18, 2A2CR19, 2A2CR31, 2A2Q8, 2A2Q9 and related components Normal operation is with both 2A2Q8 and 2A2Q9 conducting. A ground is maintained at 2XA2-12 by 2A2Q8 and at 2XA2-T by 2A2Q9. Braking occurs when one and/or the other transistor is cutoff. Both transistors are cutoff by a logic 0 , on the $50(-)$ line, at 2XA2-10. The logic 0 is fed through 2A2CR18 to 2A2Q8 and through 2A2C19 to 2A2Q9. An L mm logic 0 will also cutoff 2A2Q19 through 2A2CR31. When cutoff, the output of the cutoff transistor goes positive. This positive voltage that is the braking signal to the Servo Motor Control Assembly 2A6.

2-16. Regulator Board 2A3 Detailed Functional Operation
 (Fig FO-32)

The Regulator Board contains an RF detector comprised of 2A3R2, 2A3CR1, 2A3CR2 and 2A3C4 and a voltage regulator The RF detector senses the presence of RF on the transmission line The detector output is a reduced level of the positive signals only The voltage regulator provides a filtered +5 VDC level It also provides some filtering for the + 10 VDC line and the +28 VDC switched line.
2-17. Filter Board 2A3A Detailed Functional Operation
(Fig FO-32)
The Filter Board provides RF filtering to keep RF off the antenna coupler control cable. Each input and output of the antenna coupler passes through a separate filter network on this board. The filters are standard pi type configuration with capacitors and choke.

2-18. Phase and Amplitude Detectors 2A4 Detailed Functional Operation

(Fig FO-32)
Board 2A4 provides the outputs necessary to initiate driving 2C1 and 2L4 for tuning Its outputs are proportionate to inductive and/or capacitive phase differences and amplitude variations above and below 50
ohms. Three separate detectors are located on this board. They are the Amplitude Detector, the Reflected Power Detector and the Phase Detector.
a. Amplitude Detector. The amplitude detector provides a method of measuring the magnitude of the impedance that exists at the input to 2 T 1 . If this magnitude is greater than 50 ohms, the output from the amplitude detector will be one polarity. If the magnitude of the impedance is less than 50 ohms, the output polarity will be reversed. A voltage sample is derived from the line by capacitive divider 2A4C1, 2A4L1 and 2A4C2. This voltage sample is rectified by 2A4CR3 and produces a DC voltage proportional to the voltage on the line. A voltage proportional to the current in the line is generated by transformer 2A4T1 and is rectified by diode 2A4CR2 2A4C1 is a variable capacitor and is adjusted so the voltage sample is exactly equal to the current sample when the detector is terminated with 50 ohms. If the magnitude of the impedance at the input to 2 T 1 is greater than 50 ohms, the voltage sample will be larger than the current sample. Under these conditions, the output voltage (measured between 2A4L6 10V REF and 2A4L4 output) would be negative. If the magnitude is less than 50 ohms, the current sample is larger than the voltage sample and the output (between 10V REF and 2A4L4 output) will be positive. This output is fed to a differential amplifier located on 2A2 and generates a voltage suitable for driving the servo preamplifiers. It should be noted that the amplitude detector is floating on 10 volts and is not referenced to ground. All measurements for the amplitude detector must be referenced to the 10 volt reference line.
b. Reflected Power Detector. The amplitude detector portion of 2A4 also provides an output proportional to the reflected power on the line This is accomplished by 2A4CR1, 2A4C4, 2A4L2, and 2A4T1. The voltage sample and the current sample are added in 2A4CR1 and a voltage is produced between the 10 V reference and the REF PWR output. The reflected power detector compares both phase and magnitude of the voltage and current samples. The REF PWR output Is always one polarity, that is, it is always positive with respect to the 10 V reference Its output will be a minimum when the unit is correctly tuned. The reflected power detector is important to operation because it is used to control the operation of nearly all functions in the unit. The reflected power output from 2A4 is fed to 2A1 and amplified in a differential amplifier, 2A1U1.
c. Phase Detector. The phase detector observes the phase of the voltage at the input to 2 T 1 and generates a DC voltage proportional to the phase error The voltage sample for the phase detector is derived by 2A4C22, 2A4R6, 2A4C10, and 2A4CII This voltage sample is shifted in phase 90 degrees by the differentiating action of 2 A 4 C 22 and 2 A 4 R 6 . The current sample is generated by 2A4T2 and is in phase
with the line current. The voltage sample (shifted 90 degrees from the line voltage) is injected into the center tap of the current sensing transformer. The output of the transformer is detected by 2A4CR4 and 2A4CR5 to produce a DC voltage proportional to the phase error between the voltage on the line and the current in the line. The output of the phase detector is nulled (near zero) when the line current and the line voltage are in phase. Resistor 2A4R5 is a balance control and is adjusted so the output from the phase detector is nulled when the input to $2 \mathrm{~T} 1(50125$) is terminated with a 50 ohm-nonreactive load. It should be noted that the phase detector is also floated on the 10 V reference. The 10 V reference is connected to one side of the phase detector and all measurements are made with respect to the 10 V reference. A capacitive load (negative phase) will cause point A to go positive with respect to the 10 V reference The output of the phase detector is fed to a differential amplifier on 2A2. The phase detector is connected to the phase servo amplifier so that a positive phase angle will drive the variable capacitor toward minimum capacity while a negative phase angle will drive the variable capacitor toward maximum capacity. The amplitude detector is phased so that an impedance magnitude greater than 50 ohms will drive the variable inductor toward minimum inductance while an impedance magnitude less than 50 ohms will increase the inductance.

2-19. C3 and C6 Control Assembly 2A5 Detailed Functional Operation

(Fig FO-32)

Board 2A5 contains two bistable relays, 2A5K1 and 2A5K2. Relay 2A5K1 controls 2C6 switching relay 2K2. Relay 2A5K controls 2C3 switching relay 2 K 3 . The bistable operation of 2A5K1 and 2A5K2 means, each time an energize signal is received, it will assume its opposite state Thus, if the capacitor is in the circuit it will be switched out of the circuit. Conversely, if the capacitor is out of the circuit, it will be switched into the circuit For most antennas and frequencies, 2C3 is not needed. However, with the 2C3 switching capability, antenna tuning Is covered for a much wider range of antennas.

2-20. Servo Motor Control 2A6 Detailed Functional Operation

(Fig. FO-35
Two identical servo amplifiers make up the Servo Motor Control One servo amp drives the phase drive motor 2 M 1 . The other servo amp drives the inductance drive motor 2M2.

NOTE
Since both servo amps operate identically, only one will be discussed in detail.

A drive signal is received at either 2XA6-4 or 2XA6-5 for phase correction. The drive signal is a ground supplied by Control Logic Board 2A1. When no ground is present at either 2XA6-4 or 2XA6-5, both are at +28 VDC. Thus the servo amp is cutoff from driving in either direction. A drive signal (ground) at 2XA6-4 causes 2A6Q1 to conduct. Transistor 2A6Q1 then triggers 2A6Q2 and 2A6Q4 on. When 2A6Q2 conducts, +28 VDC is applied to 2M1-1. When 2A6Q4 conducts, a ground is provided to 2M1-2. This causes 2M1 to rotate in one direction. Removing the ground level drive signal from 2XA6-4 cuts off 2A6Q1. The DC excitation to 2 M 1 is removed and rotation stops. A drive signal (ground) at 2XA6-5 causes 2A6Q6 to conduct. Transistor 2A6Q6 then triggers 2A6Q5 and 2A6Q3 on. When 2A6Q5 conducts, +28 VDC is supplied to 2M1-2 When 2A6Q3 is conducting, ground is present at 2M1-1 The motor then rotates In the opposite direction Again, removing the ground level drive signal at 2XA6-5 this time, cuts off 2A6Q6 Motor 2M1 stops rotating. A positive braking signal is applied at 2XA6-12 to prevent overshoot and oscillation of 2 M 1 . The positive brake signal causes both 2A6Q3 and 2A6Q4 to conduct and place a ground at 2M1-1 and 2M1-2.

CAUTION

If a drive signal (ground) is placed on 2XA6-4 and 2XA6-5 simultaneously, the transistors will be destroyed A positive brake signal at 2XA6-12 anytime the motor is being driven will also destroy transistors.

2-21. 3 dB Attenuator Detailed Functional Operation

 (FigFO-32)The 3 dB Attenuator consists of $2 \mathrm{~K} 4,2 \mathrm{CR} 1$, and a 3 dB pad containing 2C4, 2R3, 2R4, 2R5, 2R6, 2R7 and 2R8 The 3 dB circuitry is used to prevent transmitting into a possible open or short circuit. The accomplish this, a 3 dB pad is switched in series with the transmission line. Switching is accomplished thru 2K4 Control Logic Board 2A1 operates 2K4. The pad is switched in when coupler tuning is initiated. When reflected power drops below threshold, the 3 dB pad is taken out of the RF path If reflected power goes above threshold the pad will be switched in series in the RF path again.

Section IV. NONCONVENTIONAL CIRCUITS

2-22. Key Line

(Fig. FO-8

Keying the radio set to transmit mode is accomplished by grounding the key line. For normal operation a ground from the mic key, the cw key, or AUDIO connector 1A8J2-G will establish transmit mode. During tuning, the Antenna Coupler Unit grounds the key line at 1A8J4-P to switch the radio set to transmit mode for tuning purposes.
NOTE
The Antenna Coupler Unit must be
connected to ACCESSORY
connector 1A8J4 or 1A8J4-p and

1A8J4-n jumpered for keying to
occur.

a. $\angle S B$, USB and $A M$ Keying. In these modes the key line is grounded when the handset press to talk switch is depressed. This ground is applied to terminal 1A3E26 on the key line. From there the key line routing is to the Antenna Coupler Unit and through relay 2K1 closed contacts 11 and 3. Diode 1A8CR6 prevents the grounded key line from energizing 2K1 at this time. The key line then returns to the transceiver and goes through closed contacts 12 and 4 of IA5KI to energize 1A5K2. Energizing 1A5K2 also energizes 1A8K1 through 1A5K2 now closed contacts 1 and 5. With 1A5K2 and 1A8K1 energized, all switching is complete for LSB, USB and AM transmit. The RF power amplifier is switched to the low pass filter and +28 VDC is applied to the power
amplifier bias circuit. Also, low voltage transmit (+ 12T) is switched in, low voltage receive ($+12 R$) is grounded through 1A5R9 and the front panel meter is switched to output monitor If the band channeling motor 1A5BI is running, 1A5K1 is energized opening contacts 12 and 4 to prevent transmit operation.
b. CW Keying. For CW transmission the key line is ground in the following manner The mode switch must be set to CW When the CW key is depressed a ground is applied to the base of 1A3A3Q12 thru 1A1S13B contacts 2 and 6 . Transistor 1A3A3Q12 is turned on and applies ground to terminal 1A3E26 through 1A3A3Q14. The key line then functions as described in paragraph 41a. above.
c. Tuning Cycle Keying. When the mode switch is set to CPLR TUNE KW, a ground is to the key line through 1A1S13A-8 and 10. But in this case 2 K 1 is energized by the ground and $2 \mathrm{~K} 1-11$ and 3 open The key line ground is then controlled by the Control Logic Board (2A1) output on pin 7. From this point on, key line operation is as described in paragraph 2-22a. above Refer to Chapter III Section III for Control Logic Board 2A1 operation.

CHAPTER 3

DIRECT SUPPORT

Section I. GENERAL

3-1. Scope

This chapter contains checkout, troubleshooting, repair, removal, replacement and other maintenance authorized for direct support of Radio Set AN/URC-92. The checkout and troubleshooting procedures are separated into a checkout/troubleshoot for the receiver transmitter RT-1277/URC-92 and a
checkout/troubleshoot for the antenna coupler CU-2229/URC-92.

3-2. Voltage Measurements

Applicable voltages and acceptable tolerances are listed in Table 3-1

Section II. TOOLS AND EQUIPMENT

3-3. Test Equipment

Refer to TM 11-5820-873-12, Appendix D, TM 11-5820-873-20P and TM 11-5820-873-34P Also, a BNC to clip lead cable is required (Fig 3-1

Table3-1 Voltage Measurements

$0 \mathrm{VDC} \pm 0.2$	$12 \mathrm{VDC} \pm 0.8$
$2 \mathrm{VDC} \pm 0.5$	$22 \mathrm{VDC} \pm 1.5$
$3 \mathrm{VDC} \pm 025$	$28 \mathrm{VDC} \pm 1.5$
$5 \mathrm{VDC} \pm 0.25$	
$7.7 \mathrm{VDC} \pm 08$	
$9 \mathrm{VDC} \pm 0.8$	$12 \mathrm{VAC} \pm 0.8$
$9.56 \mathrm{VDC} \pm 0.8$	$20 \mathrm{VAC} \pm 1.5$
$10 \mathrm{VDC} \pm 0.8$	$115 \mathrm{VAC} \pm 15$

$2 \mathrm{VDC} \pm 0.5 \quad 22$ VDC ± 1.5
$28 \mathrm{VDC} \pm 1.5$
5 VDC ± 0.25
7.7VDC ± 08

9VDC ± 0.8
10 VDC $\pm 0.8 \quad 115$ VAC ± 15

EL5EB026
Figure 3-1 BNC/Clip Lead Cable.

Section III. CHECKOUT/TROUBLESHOOT

3-4. General

This section contains checkout and troubleshooting for both the receiver-transmitter and the antenna coupler. Completion of a checkout signifies a particular unit is operationally ready for use. Troubleshooting procedures are designed to function from incorrect indications in the checkout.

3-5. Receiver-Transmitter RT-1277/
 URC-92 Checkout/Troubleshoot

The following procedures in Table 3-2 will establish the operational readiness of RT-1277/URC-92 receivertransmitter. Successful completion of the checkout portion indicates the receiver-transmitter Is operationally ready for use. Troubleshooting procedures are designed to function from incorrect indications in the checkout.

The procedures correspond with the authorized maintenance level at direct support. Following any repair action, the test technician must return to step 1 of the checkout unless directed differently by the procedure. The troubleshooting does not consider incorrect or missing supply voltages to subassemblies. Before any replace/repair action is accomplished on a subassembly, the test technician should verify all necessary supply voltages at the subassembly. Refer to List of Illustrations for the appropriate schematic. Incorrect or missing supply voltages are not authorized for repair at this maintenance level. If supply voltage malfunctions are noted, route the Receiver-Transmitter RT-1277/URC-92 to the next higher maintenance level for repair.

Table 3-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92

ACTION

Remove top and bottom covers Connect 115
VAC power cable to POWER connector 1A8J3 Connect 50 ohm dummy load thru a thruline wattmeter to ANT jack IA8JI Connect a known good Antenna Coupler CU-22291URC-92 to ACCESSORY jack 1A8J4 Set XMIT GAIN control fully counterclockwise Set VOLUME control clockwise, $1 / 4$ turn Push VFO control in (off) Set DIM control fully clockwise
Set mode switch to LSB
Check pilot lamp and display
Rotate DIM control one position counterclockwise Then rotate DIM control another position counterclockwise
Set FREQ CONTROL switch to A Set FRE-
QUENCY A control to 15000 MHz Rotate 100
KHz control thru positions 4, 3, 2, 1, and 0 Rotate 100 KHz control thru positions $6,7,8$, and 9
Set FREQ CONTROL switch to B
QUENCY B controls to 15000 MHz Rotate 100
KHz control thru positions 4, 3, 2, 1 and 0 Rotate 100 KHz control thru positions 6, 7,8, and 9
Set FREQ CONTROL switch to A Set FREQUENCY A controls to 16000 MHz Increase VOLUME control until noise is heard in speaker Connect a known good headphone at 1A1J3

Disconnect headphone. Connect known good handset at MIC connector 1A1J1 Disconnect handset. Rotate RF GAIN control counterclockwise and observe meter Return RF GAIN control to fully clockwise position and VOLUME control to l/4 turn clockwise Connect a known good CW key at the KEY jack Set FREQUENCY A controls to 299950 MHz Set mode switch to CW Depress CW key Depress CW key and observe wattmeter.
Connect oscilloscope across dummy load. Set oscilloscope to 2V/division Set FREQUENCY A controls to 299995 MHz Set mode switch to LSB Connect microphone to MIC connector Key microphone and observe oscilloscope.
Set mode switch to USB Key microphone and observe oscilloscope.
Set oscilloscope to $50 \mathrm{~V} /$ division Key, and speak into microphone Increase XMT GAIN control until no further increase m peak-to-peak voltage is observed
Set mode switch to LSB. Key and speak into microphone Increase XMT Gain until no further increase In peak-to-peak voltage is observed Set mode switch to AM Key, and speak into microphone Observe oscilloscope
Connect frequency counter to oscilloscope vertlcal amplifier output. Connect oscilloscope across dummy load Set FREQUENCY A controls to 16000 MHz Turn XMT GAIN Control fully counter clockwise Key microphone Starting with 100 Hz control, rotate each FREQUENCY A control through its entire range

INDICATION
NEXT STEP

ANTENNA COUPLER CONTROL meter lamp iiluminates
Pilot lamp and display illuminate
Pilot lamp and display intensity dim, then go out Meter lamp retain intensity, then goes out

LOW FREQ LIMIT lamp illuminates and speaker noise level decreases

LOW FREQ LIMIT lamp is out and receiver/
transmitter is enabled
Set FRE-LOW FREQ LIMIT lamp Illuminates

LOW FREQ LIMIT lamp is out.
Noise is heard In speaker.

Noise is heard in headphone.
Noise is heard In ear piece of handset
Front panel meter reading increases to almost
full scale deflection
Sidetone is heard in speaker

Wattmeter indicates $100 \mathrm{~W} \pm 10 \mathrm{~W}$
Oscilloscope displays waveform similar to Fig 3-2A, less than 2 V peak-to-peak

Oscilloscope displays waveform similar to Fig
3-2A, less than 2 V peak-to-peak
Oscilloscope displays waveform similar to Fig
3-2A, 190 V peak-to-peak maximum

Oscilloscope displays waveform similar to Fig 3-2A, 190 V peak-to-peak maximum

Oscilloscope displays waveform similar to Fig 3-2B, modulated carrier signal Frequency counter and front panel readouts agree for each frequency

Yes step 2b
No step 17
Yes: step 2c
No: step 19
Yes: step.3a
No: step 132
Yes: step3b
No: step 21
Yes: step3c
No: step 132
Yes step 3d
No: step 132
Yes: Step 3e
No: step 132
Yes: step 3e
No: step26
Yes step 3g
No: step 132
Yes: step 3h
No step 140
Yes: step4a
No: step 28
Yes: step 4b
No: step 29

Yes: step 5 a
No: step 33
Yes: step 5b
No: step 84

Yes: step 5c
No: step 84
Yes: step 5d
No: step 85

Yes: step 5e
No: step 132
Yes: step 6a
No: step88
Yes: step 6b
No: step 132

Table 3-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC- 92-Continued

ACTION

Set FREQ CONTROL switch to B Repeat step 6a
using FREQUENCY B controls
Set FREQ CONTROL switch to A Pull out VFO
PULL control (VFO on)
Connect frequency counter to oscilloscope vertlcal amplifier output. Connect oscilloscope across dummy load Set FREQUENCY A controls to 2.0000 MHz Key microphone Rotate VFO
PULL Control through its entire range
Set FREQ CONTROL to A XMT B RCV. Key microphone Rotate FREQUENCY B, 10 KHz control.
Release microphone key. Observe front panel readout and rotate FREQUENCY A, 10 KHz control
Disconnect antenna coupler control cable Disconnect CW key and mlc. Remove dummy load from
ANT jack IA8JI Connect signal generator to
ANT jack 1A8J1 Connect VTVM (AC) to
PHONE jack 1A1J3 Set mode switch to LSB Set FREQ CONTROL to B Set FREQUENCY B con trols to 299994 MHz Adjust VOLUME CONTROL for VTVM indication of - 20 dB Set signal generator output level to 0.5 uV Adjust signal generator frequency to approximately 299994 MHz , until VTVM indication peaks
Repeat step 82 substituting the following FREQUENCY B, and signal generator frequency settings:
160100 MHz
100100 MHz
75100 MHz
50100 MHz
35100 MHz
2.0100 MHz
16100 MHz

Set mode switch to USB Return FREQUENCY B switches to 299994 MHz . Adjust signal generator frequency to approximately 299994 MHz , until VTVM indication peaks.
Set mode switch to AM, FREQUENCY B controls to 299994 MHz Signal generator output level to 30 uV , frequency to $299994 \mathrm{MHz}, 300 \mathrm{k}, 1 \mathrm{KHz}$ modulation Adjust signal generator for peak VTVM indication Adjust VOLUME control for -10 dB VTVM indication. Remove modulation from signal generator output.
Set mode switch to LSB. Set FREQUENCY B switches to 20000 MHz Disconnect VTVM from PHONE jack Increase VOLUME control until noise is heard Rotate 1 MHz control thru each of its positions.
Set mode switch to OFF Disconnect control cable at receiver-transmitter 1A8J4 Connect multimeter between ACCESSORY connector 1A8J4-P and ground Set mode switch to AM Slowly adjust ANTENNA COUPLER CONTROL gam control 1A2R2 thru its entire range.
Reset gain control 1A2R2 to $14.5 \mathrm{VDC} \pm 0.5$ VDC Set mode switch to OFF Disconnect dummy load from antenna jack 1A\&J1 Connect RF and control cables between the receiver-transmitter and a known good CU-22291URC-92 Antenna Coupler Connect a 50 ohm dummy load to

INDICATION
Frequency counter and front panel readouts agree for each frequency
VFO lamp illuminates
Frequency counter indicates $2.0000 \mathrm{MHz} \pm 5$ KHz minimum

Frequency counter indicates 16000 MHz and front panel readouts agree

No readout change occurs

VTVM indicates - 10 dB or more

VTVM indicates at least - 10 dB or more

VTVM indicates at least - 10 dB or more

VTVM indicates less than - 20 dB

At each position noise blanks momentarily then returns.

Meter indicates a range between +12 and +22 VDC + 10\%

NEXT STEP
Yes: step 6c
No: step 132
Yes: step 6d
No: step 108
Yes: step 7a
No: step 109

Yes: step7b
No: step 132
Yes: step 8a
No: step 132
Yes: step 8b
No: step 110

Yes: step 9a No: step 132

Yes step 9b
No: step 136

Yes: step 9c
No: step 122

Yes: step 10
No: step 132

Yes: step 11
No: step 143

Step 12

Table 3-2 Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92-Continued

ACTION

the Antenna Coupler antenna post and ground post using a BNC/clip lead cable
Set mode switch to CPLR TUNE KW
WARNING
Several kilovolts are present at the Antenna Coupler antenna post, E1, during steps 13 thru 14b Exercise caution and do not contact antenna post E1.

Depress TUNE START.

Set frequency to 40 MHz . Set REFL FWD POWER MONITOR switch to REFL
TUNE START and observe meter 1A2M1.
Set REFL FWD POWER MONITOR switch to
FWD. Set frequency to 12995 MHz
TUNE START and observe meter 1A2M1.
Set mode switch to OFF Connect DC power cord
to 1A8J3 Connect wattmeter and dummy load to
ANT jack 1A8J1 Connect CW key to Key jack
1A1J4 Check DC fuse 1A6F3 for proper value for 13 VDC operation. Check 1A6TB2 wiring for 13 VDC operation. refer to Operator and Organizational Maintenance Manual TM 11-5820-873-12. Set 1A6A2-S1 for 13 VDC operation Set mode switch to CW. Depress CW key.
Set mode switch to OFF Replace DC fuse with appropriate fuse for 26 VDC operation Rewire
1A6TB2 for 26 VDC operation, refer to Operator
and Organizational Maintenance Manual TM
11-5820-873-12 Set 1A6A2-S1 for 26 VDC operation Turn power on Depress CW key.
Set mode switch to OFF Disconnect all external
cabling and test equipment.
Reassemble Receiver-Transmitter RT-12771
URC-92.
Ensure inverter is tagged properly for 26 VDC operation.
Receiver-Transmitter RT-1277/URC-92 checkout is now complete Receiver-Transmitter is operationally ready.
Check fuse 1A6F2

Connect multimeter between meter lamp center contact and ground
Check fuse 1A6F3

Connect multimeter between 1A1DS3 center contact and ground.

Connect multimeter between 1AIDS1-1 center contact and ground.

Connect multimeter between 1A3XJ5-B and ground
Connect multimeter between 1A3XA4J4-14 and ground

INDICATION

NEXT STEP
COUPLER STATUS FAULT indicator illumi-
nates
NOTE

If COUPLER STATUS READY indicator does not illuminate during this step, depress TUNE START once more If READY indicator illuminates after the second time, the indication is good.
COUPLER STATUS FAULT indicator goes out and COUPLER STATUS TUNING indicator illuminates When the antenna coupler is tuned. COUPLER STATUS TUNING Indicator goes out and COUPLER STATUS READY indicator Illuminates

Meter 1A2M1 indicates a refl power level	Yes: step 14b
Depress	No: step 143
Meter 1A2M1 indicates a fwd power level	Yes: step 15a
Depress	No: step 143
Clear audio tone with minimal background noise	Yes: step 15b
in speaker Wattmeter indicates $100 \mathrm{~W} \pm 10 \mathrm{~W}$	No: step114

Clear audio tone with minimal background noise heard in speaker Wattmeter indicates $100 \mathrm{~W} \pm$ 10 W.
Fuse checks good Yes: step 18

No: replace fuse
1A6F2
Yes: replace meter lamp
No: step 132
Yes: step 20
No: replace fuse
1A6F3
Yes: replace
1A1DS3
No: step 132
Yes: replace
1A1DS1
No: step 22
Yes: step 23
No: step 132\%
Yes: step 24
No: step 132

C

G
H
J

M

Figure 3-2. Direct Support Checkout/Troubleshoot the Receiver-Transmitter Waveforms.

Table 3-2 Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92-Continued

ACTION

Connect multimeter between 1A3XA3J3-S and ground.
Set mode switch to OFF. Replace Audio CCA
1A3A4 with a known good Audio CCA Set mode switch to LSB.
Connect oscilloscope probe to 1A3XA4J4-18, ground lead to ground.
Connect multimeter between 1A3XA4J4-14 and ground.
Connect multimeter between 1A3XA4J4-15 and ground.
Connect frequency counter to 1A3XA3J3-D, ground lead to ground Depress CW key. Connect frequency counter to 1A3A4P1-4, ground lead to ground Depress CW key.
Continuity check 1AIJ4 center contact to 1AIP2-J.
Continuity check 1A3XA3J3-2 to 1A3A5-J.

Connect oscilloscope probe to 1A3XA3J3-16, ground lead to ground.
Connect oscilloscope probe to 1A3XA1J1-5, ground lead to ground Depress CW key.
Remove 1A3P3 from 1A7J1 Connect VTVM
(AC) to 1A3P3 center contact, ground lead to ground Depress CW key.
Remove 1A8P3 from 1A7J2 Connect wattmeter to 1A7J2 center contact, ground lead to ground Depress CW key.
Connect frequency counter to 1A3XA3J3-F, ground lead to ground Depress CW key. Connect multimeter between 1A3XA3J3-T and ground Depress CW key
Connect multimeter between 1A3XA3J3-S and ground Depress CW key Connect multimeter between 1A3XA3J3-10 and ground
Connect oscilloscope probe to 1A3XA2J2-5, ground lead to ground Depress CW key Reconnect 1A7J1 to 1A3P3 Connect VTVM (AC) to 1A3XA1J1-8, ground lead to ground Depress CW key
Connect multimeter between 1A7A1J3-F and ground Depress CW key
Connect VTVM (AC) to 1A4XA1J1-13, ground lead to ground Depress CW key
Connect multimeter between 1A7A1J3-D and ground Depress CW key
Connect oscilloscope probe to 1A3XA2J2-16, ground lead to ground Depress CW key
Connect multimeter between 1A3XA2J2-10 and ground Depress CW key
Connect multimeter between 1A3XA2J2-D and ground Depress CW key
Connect multimeter between 1A3XA1J1-U and ground Depress CW key
Connect multimeter between 1A3XA1J1-10 and ground
Connect multimeter between 1A3XA1J1-13 and ground Depress CW key
Connect frequency counter to oscilloscope vertlcal output jack Connect oscilloscope probe to 1A3XA1J1-1, ground lead to ground

INDICATION
Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Receiver-transmitter is disabled.

Check for noise above ambient level.
Multimeter indicates +2 VDC to ± 8.0 VDC .
Multimeter indicates +2 VDC to +8.0 VDC.

Frequency counter indicates 1 KHz .

Frequency counter indicates 1 KHz .
Continuity checks good.
Continuity checks good.

Oscilloscope displays waveform similar to Fig 3-2C.
Oscilloscope displays waveform similar to Fig 3-2D.
VTVM indicates more than 100 mV .

Wattmeter indicates more than 90 watts.

Frequency counter indicates 10.5 MHz .

Multimeter indicates less than +0.5 VDC .

Multimeter indicates less than + 1.4 VDC.
Multimeter indicates + 12 VDC $\pm 0.8 \mathrm{VDC}$.

Oscilloscope displays waveform similar to Fig 3-2D.
VTVM indicates more than 100 mV .

Multimeter indicates + $28 \mathrm{VDC} \pm 1.5 \mathrm{VDC}$.

VTVM indicates 0.1 V minimum.

Multimeter indicates less than +0.5 VDC .
Oscilloscope displays waveform similar to Fig 3-2C.
Multimeter indicates + 12 VDC + 0.8 VDC.

Multimeter indicates + $107 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.

Multimeter indicates less than +1.2 VDC.
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.

Multimeter indicates less than + 8 VDC.

Oscilloscope displays waveform similar to Fig $3-2 E$, minimum amplitude, 300 millivolts Frequency counter indicates $80.75 \mathrm{MHz} \pm 10 \mathrm{KHz}$.

NEXT STEP
Yes: step 25
No: step 132
Yes: step 121
No: step 134

Yes: step 132
No: step 27
Yes: step 133
No: step 132
Yes: step 132
No: step 133
Yes: step 30
No: step 31
Yes: step 133
No: step 132
Yes step 32
No: step 132
Yes: step 134
No: step 132
Yes: step 34
No: step 37
Yes: step 35
No: step 41
Yes: step 36
No: step 42

Yes: step 132
No: step 43

Yes: step 38
No: step 44
Yes: step 39
No: step 45
Yes: step40
No: step 132
Yes: step 134
No: step 132
Yes: step 132
No: step 46
Yes: step 132
No: step 49

Yes: step 135
No: step 132
Yes: step 132
No: step 135
Yes: step 132
No: step 135
Yes: step 47
No: step 132
Yes: step 48
No: step 132
Yes: step 136
No: step 59
Yes: step 50
No: step 61
Yes: step 51
No: step 132
Yes: step 52
No: step 62
Yes: step 53
No: step 63

Table 3-2 Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92-Continued ACTION

INDICATION

Connect oscilloscope with frequency counter at vertical output to 1A3XA1J1-18, ground lead to ground.
Connect frequency counter to oscilloscope vertical output jack Connect oscilloscope probe to 1A4XA1J1-S, ground lead to ground. Connect multimeter between 1A4A6-E1 and ground.
Connect multimeter between 1A4A6XALJ1-K and ground.
Connect multimeter between 1A6A1-15 and ground.
Check fuse 1A6A1F3.

Connect multimeter between 1A3A5-R and ground.
Connect multimeter between 1A3A5XA2J2-8 and ground.
Connect multimeter between 1A7A1J3-B and ground Depress CW key.
Connect multimeter between 1A3XA2J2-P and ground Depress CW key.
Connect oscilloscope probe to 1A4XA3J3-11, ground lead to ground.

Remove 1A3P1 from 1A4A5-J1. Connect frequency counter to oscilloscope vertical output Connect oscilloscope probe to 1A4A5-J1 center pin, ground lead to ground
Connect RF voltmeter to 1A4XA3J3-D, ground lead to ground
Connect frequency counter to oscilloscope vertlcal output jack Connect oscilloscope probe to 1A4XA3J3-P, ground lead to ground.
Connect frequency counter to 1A4XA3J3-B ground lead to ground.
Connect frequency counter to 1A4XA3J3-U, ground lead to ground.
Connect multimeter between 1A4XA5J5-4 and ground.
Connect RF voltmeter to 1A4XA1J1-4, ground lead to ground.
Connect oscilloscope probe to 1A4XAIJI-1, ground lead to ground.

Connect frequency counter to 1A4XA2J2-1, ground lead to ground.
Connect frequency counter to 1A4XA5J5-2, ground lead to ground.
Connect multimeter between 1A4XA4J4-15 and ground.
Connect frequency counter to oscilloscope vertical output jack Connect oscilloscope probe to 1A4XA2J2-18, ground lead to ground Connect VTVM (AC) to 1A4XA2J2-C, ground lead to ground.
Connect multimeter between 1A4XA2J2-U and ground.
Set FREQUENCY A controls to 00.0000 MHz Connect oscilloscope probe to 1A4XA4J4-V, Ground lead to ground

Frequency counter indicates between 111.000	Yes: step 137
MHz and 122.000 MHz .	No: step 64
Oscilloscope displays waveform similar to Fig	Yes: step138
3-2F, 03 to 09 V peak-to-peak Frequency counter indicates $50 \mathrm{MHz} \pm 5 \mathrm{~Hz}$.	No: step 132
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step56
	No: step 132
Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 57
	No: step 132
Multimeter indicates $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.	Yes: step 138
	No: step 58
Fuse checks good.	Yes: step 132
	No: replace fuse 1A6A1F3 If fuse blows again go to step 120
Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 60
	No: step 132
Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 136
	No: step 132
Multimeter indicates less than +1.2VDC.	Yes: step 132
	No: step 135
Multimeter indicates less than + 8.0 VDC.	Yes: step 132
	No: step 136
Oscilloscope displays waveform similar to Fig	Yes: step 132
3-2E. minimum amplitude 300 millivolts Frequency counter indicates $80.75 \mathrm{MHz} \pm 10 \mathrm{KHz}$.	No: step 65
Frequency counter indicates between 111.0000	Yes: step 132
MHz and 122.0000 MHz .	No: step69
RF voltmeter indicates .085 V minimum.	Yes: step 66
	No: step 70
Oscilloscope displays waveform similar to Fig	Yes: step 67
$3-2 \mathrm{G}, 03 \mathrm{~V}$ minimum amplitude. Frequency counter indicates $20 \mathrm{MHz}+20 \mathrm{~Hz}$.	No: step 71
Frequency counter indicates between 1.5000	Yes: step 68
MHz and 1.5999 MHz.	No: step 72
Frequency counter indicates between 111.0000	Yes step 139
MHz and 122.0000 MHz .	No: step 73
Multimeter indicates + 2.0 VDC $\pm 0.5 \mathrm{VDC}$.	Yes: step 140
	No: step 74
RF voltmeter indicates .085 V minimum.	Yes: step 132
	No: step 138
Oscilloscope displays waveform similar to Fig	Yes: step 132
$3-2 \mathrm{G}, 03 \mathrm{~V}$ minimum amplitude Frequency counter indicates $20 \mathrm{MHz} \pm 20 \mathrm{~Hz}$.	No: step 138
Frequency counter indicates between 1.5000	Yes: step 132
MHz and 1.5999 MHz	No: step 75
Frequency counter indicates between 111.0000	Yes: step 132
MHz and 122.0000 MHz	No: step 140
Multimeter indicates + 2.0 VDC $\pm 0.5 \mathrm{VDC}$	Yes: step 132
	No: step 78
Oscilloscope displays waveform similar to Fig	Yes: step 76
$3-2 \mathrm{H}$. Frequency counter indicates $1 \mathrm{KHz} \pm 1$	No: step 80
VTVM indicates .09 V peak-to-peak minimum	Yes: step 77
	No: step 81
Multimeter indicates + 7.7 VDC $\pm 0.8 \mathrm{VDC}$	Yes: step 141
	No: step 132
Oscilloscope displays waveform similar to Fig	Yes: step79
3-2J.	No: step82

Table 3-2 Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92-Continued ACTION INDICATION

Connect oscilloscope to 1A4XA4J4-B, ground lead to ground.
Connect oscilloscope probe to 1A4XA1J1-18, ground to lead ground.
Connect VTVM (ACO 1A4XA1J1-6, ground lead to ground.
Connect oscilloscope probe to 1A4XA1J1-17, ground lead to ground.
Connect oscilloscope to 1A4XA3J3-15, ground lead to ground.
Replace Sideband Generator CCA with known good Sideband Generator CCA Key microphone. Connect multimeter between 1A3XA3J3-17 and ground.
Connect frequency counter to 1A3XA2J2-1.

Connect frequency counter to 1A3XA3J3-1.

Connect multimeter between 1A3A5-E11 and ground.
Connect multimeter between 1A3A5XA2J2-6 and ground.
Connect multimeter between 1A3A5XA3J3-5 and ground.
Connect frequency counter to 1A3A5XA2J2-1, ground lead to ground.
Remove Translator CCA 1A4A3 Connect frequency counter to 1A4XA2J2-1. Perform frequency checks as shown below.
Oscilloscope displays waveform similar to Fig
3-2K.
Oscilloscope displays waveform similar to Fig
3-2H.
VTVM indicates 09 V peak-to-peak minimum.
Oscilloscope displays waveform similar to Fig
3-2J.
Oscilloscope displays waveform similar to Fig
3-2L.
Oscilloscope displays waveform similar to Fig
3-2A, less than 2 V peak-to-peak maximum.
Multimeter indicates less than +1.6 VDC .
Frequency counter indicates 10.5 MHz .
Frequency counter indicates 10.5 MHz .
Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Frequency counter indicates 10.5 MHz .
Frequency checks are correct.

Frequency Checks

Frequency Switch Settings			
10 KHz	1 KHz	100 Hz	FREQUENCY
0	0	1	1.5001 MHz
0	0	2	1.5002 MHz
0	0	3	1.5003 MHz
0	0	4	1.5004 MHz
0	0	5	1.5005 MHz
0	0	6	1.5006 MHz
0	0	7	1.5007 MHz
0	0	8	1.5008 MHz
0	0	9	1.5009 MHz
10 KHz	1 KHz	100 Hz	FREQUENCY
0	1	0	1.5010 MHz
0	2	0	1.5020 MHz
0	3	0	1.5030 MHz
0	4	0	1.5040 MHz
0	5	0	1.5050 MHz
0	6	0	1.5060 MHz
0	7	0	1.5070 MHz
0	8	0	1.5080 MHz
0	9	0	1.5090 MHz
10 KHz	1 KHz	00 Hz	FREQUENCY
1	0	0	1.5100 MHz
2	0	0	1.5200 MHz
3	0	0	1.5300 MHz
4	0	0	1.5400 MHz
5	0	0	1.5500 MHz
6	0	0	1.5600 MHz
7	0	0	1.5700 MHz
8	0	0	1.5800 MHz
9	0	1.5900 MHz	

Table 3-2 Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92-Continued

Connect signal generator to 1A4A6-E17 using 50 ohm coaxial cable. Connect multimeter between 1A4A4-TP1 and ground. Set signal generator frequency to 9.9 MHz , output level to 1 V RMS. Temporarily unplug translator CCA 1A4A3. Set $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 KHz switches to 0 . Slowly increase signal generator frequency.

Using a multimeter between ground and pin indicated, and by varying the frequency above and below the indicated transition frequency, perform frequency switch checks as shown below.

INDICATION

NEXT STEP ACTION

Multimeter indicate, more than + 4.5 VDC
Yes: step 94
No: step 105

Frequency Checks

	Frequency Switch Settings
10 MHz	1 MHz
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	1
0	2
0	3
0	4
0	5
0	6
0	7
0	8
0	9
sing a multimeter between ground and pin indi	
and	

At 100 MHz , multimeter indication changes to less than +0.9 VDC.
In each case, multimeter indicates greater than +4.5 VDC with signal generator below the transition frequency, and less than +0.9 VDC with signal generator above the transition frequency.

Yes: step 95
No: step 105
Yes: step 96
No: step 105

Frequency ($\pm 1 \mathrm{KHz}$)
10.1 MHz
10.2 MHz
10.3 MHz
10.4 MHz
10.5 MHz
10.6 MHz
10.7 MHz
10.8 MHz
10.9 MHz
11.0 MHz
12.0 MHz
13.0 MHz
14.0 MHz
15.0 MHz
16.0 MHz
17.0 MHz
18.0 MHz
19.0 MHz

Yes: step 85
No: step 104
signal generator above the transition frequency.
Frequency Checks

Frequency Switch Settings			
10 MHz	1 MHz	100 KHz	Frequency ($\pm 1 \mathrm{KHz}$)
1	0	0	200 MHz
2	0	0	300 MHz
2	9	9	399 MHz
Connect mu ground Check	U and oltages	Voltages check good.	Yes: step 98 No: step99

VCO Low Digit Coarse Steering
10 KHz Switch Setting
0
1A4XA2J2 pin U
VOLTS
3.50
3.85
4.15
4.55
4.95
5.40
5.90
6.40
7.00
7.70

Table 3-2 Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92-Continued

Continuity check 1A4XA4-B to 1A4XA3-15.	Continuity checks good.	Yes: step 139 No: step 132
Connect multimeter between 1A4XA2J2-U and ground. Check low digit coarse steering voltages as shown.	Voltages check good	Yes: step 100 No. step 101
Continuity check	Continuity checks good	Yes: step 141
1A4A6J1-12 to 1A4XA2J2-M		No: step 132
1A4A6J1-11 to IA4XA2J2-10		
1A4A6J1-M to 1A4XA2J2-11		
1A4A6J1-Nto 1A4XA2J2-12		
1A4A6J1-13 to 1A4XA2J2-P		
1A4A6J1-10 to 1IA4XA2J2-12		
1A4A6J1-L to 1A4XA2J2-13		
1A4A6J1-P to 1A4XA2J2-N		
1A4A6J1-14 to IA4XAZJ2-S		
1A4A6J1-9to 1A4XA2W2-14		
1A4A6J1-K to 1A4XA2J2-15		
1A4A6J1-R to IA4XA2J2-R		
Using multimeter perform 10 MHz switch/VHF	$10 \mathrm{MHz} / \mathrm{VHF}$ Divider preset checks are good	Yes: step 102
Divider preset checks as shown below		No: step 142
10 MHz	1A4XA4J4-12	1A4X4J4-13
Switch Setting	Volts	Volts
0	8 or less	2.0 to 50
1	2.0 to50	8 or less
2	0.8 or less	0.8 or less
Continuity check	Continuity checks good	Yes: step 103
1A4XA4J4-12 to 1A4XA5J5-7		No: step 132
1A4XA4J4-3 to 1A4XA5J5-6		
1A4A6J1-2 to 1A4XA5J5-18		
1A4A6J1-3 to 1A4XA5J5-17		
1A46J1-B to 1A4XA5J5-16		
Continuity check	Continuity checks good	Yes: step 140
1A4A6J1-2 to 1A1S1A-10, front		No: step 132
1A4A6J1-3 to 1A1S1A-1, front		
1A4A6JI-B to 1A1S1A-2, front		
Connect multimeter between 1A4XA5J5-15 and	Voltages check good	Yes: step 132
ground Check coarse steering voltages as shown below		No: step 140
	Coarse Steering	
	1A4XA5J5 pin 15	
1 MHz Switch Setting	VOLTS	
0	1.37	
1	1.78	
2	2.18	
3	2.75	
4	3.31	
5	4.12	
6	4.93	
7	6.15	
8	7.85	
9	9.56	
Replace VHF Divider CCA 1A4A4 with known	Respective indications are correct	Yes: step 142
good VHF Divider CCA Repeat steps 81, 82. and 83.		No: step 132
Replace VHF VCO CCA 1A4A5 with known good	Indication Is correct	Yes: step 140
VHF VCO CCA Repeat step 84.		No: step 132
Replace Low Digit Generator CCA 1A4A2 with	Indication is correct	Yes: step 141
known good Low Digit generator Repeat step 85.		No: step 132
Connect multimeter across 1A1DS2 contacts.	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$	Yes: replace 1A1DS2 No: step 109
Connect multimeter between 1A4XA3J3-A and ground.	Multimeter indicates + $76 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$	Yes: step 132 No: step 139

Table 3-2 Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92-Continued

STEP ACTION

110 Set signal generator to 0 dB . Connect oscilloscope probe to 1A3XA2J2-5, ground lead to ground.
111 Connect oscilloscope probe to 1A3XA4.14-11, ground lead to ground.
112Connect multimeter between 1A3XA4J4-9 and ground.
113Connect multimeter between 1A3XA4J4-13 and ground.
114Connect VTVM (AC) to 1A3XA4J4-6, ground lead to ground.
115 Connect frequency counter to 1A3XA1J1-15, ground lead to ground.
116 Connect frequency counter to oscilloscope vertlcal output jack Connect oscilloscope probe to 1A3XA2J2-11, ground lead to ground.
117Connect multimeter between 1A3XA1J1-3 and ground.
118 Connect multimeter between 1A3XA1J1-P and ground.
119Connect multimeter between 1A3XA2J2-9 and ground.
120 Connect multimeter between 1A3XA2J2-P and ground.
121 Connect multimeter between 1A3XA2J2-3 and ground.
122Connect multimeter between 1A3A5-E5 and ground.
123 Set signal generator to 0 dB and 100% modulation. Connect oscilloscope probe to 1A4XA1-13, ground lead to ground.
124 Connect multimeter between 1A4A6-E16 and ground.
125Connect multimeter between 1A4XA1J1-L and ground.
126 Connect oscilloscope probe to 1A3XA2J2-11, ground lead to ground.
127 Connect multimeter between 1A3XA4J4-7 and ground.
128 Connect multimeter between 1A3XA2J2-7 and ground.
129 Check DC fuse 1A6F3 and fuse cartridge.

130 Connect multimeter across contacts of COUPLER STATUS FAULT Iamp 1A2DS2.

131 Set mode switch to OFF. Disconnect antenna coupler control cable Connect multimeter across contacts of indicator that did not illuminate
132Unit not authorized for repair at this maintenance level Route entire RT-12771URC-92 to next higher maintenance lev level for repair
133Replace Audio CCA 1A3A4 Route original Audio CCA to next higher maintenance level for repair 134 Replace Sideband Generator CCA 1A3A3 Route original Sideband Generator CCA to next higher maintenance level for repair
135Replace RF Power Amplifier Assy 1A7A1 Route original RF Power amplifier Assy to next higher maintenance level for repair
136Replace IF Filter CCA 1A3A2 Perform 2nd IF adjustment Route original IF Filter CCA to next higher main tenance level for repair

NEXT STEP
Yes: step 111
No: step 115
Yes: step 112
No: step 116
Yes: step 113
No: step 132
Yes: step 114
No: step 132
Yes: step 133
No: step 132
Yes: step 117
No: step 132
Yes: step 132
No: step 119
Yes: step 118
No: step 132
Yes: step 137
No: step 132
Yes: step 120
No: step 132
Yes: step 121
No: step 132
Yes step 136
No: step 132
Yes: step 123
No: step 132
Yes: step 124
No: step 126
Yes: step 125
No: step 132
Yes: step 138
No: step 132
Yes: step127
No: step 128
Yes: step 133
No: step 132
Yes: step 136
No: step 132
Yes: step 132
No: replace fuse 1A8F3
Yes: replace 1A2DS2 and go to step 13
No: step 143
Yes: step 143
No: replace faulty indicator

Table 3-2 Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92-Continued

STEP
ACTION
INDICATION
NEXT STEP
137Replace VHF Mixer CCA 1A3A1 Route original
VHF Mixer CCA to next higher maintenance level for repair
138Replace Spectrum Generator CCA 1A4A1 Route
original Spectrum Generator CCA to next higher maintenance level for repair
139Replace Translator CCA 1A4A3 Route original
translator CCA to next higher maintenance level for repair
140Replace VHF VCO CCA 1A4A5 Route original
VHF VCO CCA to next higher maintenance level for repair
141 Replace Low Digit Generator CCA 1A4A2 Route
original Low Digit Generator CCA to next higher maintenance level for repair
142Replace VHF Divider CCA 1A4A4 Route orig-
inal Low Digit Generator CCA to next higher maintenance level for repair
143Replace ANTENNA COUPLER CONTROL 1A2 Route original ANTENNA COUPLER CONTROL to next higher maintenance level for repair

3-6. Antenna Coupler CU-2229/URC-92

 Checkout/TroubleshootThe following procedures in Table 3-3 will establish the operational readiness of CU-2229/URC-92 antenna coupler. Successful completion of the checkout portion indicates the antenna coupler is operationally ready for use. Troubleshooting procedures are designed to function from incorrect Indications in the checkout Following any repair action, the test technician must return to step 1 of the checkout unless instructed differently by the
procedure The troubleshooting does not consider incorrect or missing supply voltages to subassemblies Before any replace/repair action is accomplished on a subassembly, the test technician should verify all necessary supply voltages at the subassembly Refer to List of Illustrations for appropriate schematics Incorrect or missing supply voltages are not authorized for repair at this maintenance level If supply voltage malfunctions are noted, route the Antenna Coupler CU-2229/URC-92 to the next higher maintenance level for repair.

Table 3-3. Checkout/Troubleshoot the Antenna Coupler CU-2229/URC-92
$\underset{1}{\text { STEP }}$

2a
2b

3a

ACTION
Remove case from Antenna Coupler CU-22291URC-92 Connect RF and control cables between the Antenna Coupler to be checked and a known good RT-1277/URC-92 Receiver-Transmitter. Insure the receiver-transmitter is correctly powered and grounded Set mode switch to AM.

Disconnect RF cable at the receiver-transmitter Connect a 50 ohm dummy load to the receivertransmitter.

NOTE
A means of timing, in seconds, is required for this step.
Set mode switch to CPLR TUNE KW. Depress
TUNE START. Begin timing and observe COUPLER STATUS indicators.

Disconnect dummy load from receivertransmitter. Reconnect if cable from Antenna Coupler. Connect 50 ohm dummy load to the Antenna Coupler antenna post. Connect ground

COUPLER STATUS FAULT indicator illumi- Yes: step 2b nates.

No: step 7

$$
\begin{array}{ll}
\text { COUPLER STATUS FAULT indicator goes out } & \text { Yes: step 3a } \\
\text { COUPLER STATUS TUNING indicator is Illumi- } & \text { No: step 8 } \\
\text { nated and transmitter keys on. After } 35 \text { to } 45 \text { se- } & \\
\text { conds, transmitter unkeys and COUPLER } & \\
\text { STATUS TUNING indicator goes out COUPLER } & \\
\text { STATUS FAULT indicator illuminates } & \\
\text { COUPLER STATUS TUNING indicator il- } & \text { Yes: step 3b } \\
\text { luminates, transmitter keys and both drive } & \text { No: step14 } \\
\text { motors, 2M1 and 2M2, drive. } &
\end{array}
$$

NEXT STEP Step 2a

INDICATION

Table 3-3. Checkout/Troubleshoot the Antenna Coupler CU-2229/URC-92-Continued
to ground post. Set frequency to 1602 MHz . Depress TUNE START.
Set mode selector to CW.

Set mode switch to CPI,R TUNE KW. Depress TUNESTART.

Set mode switch to CW then return to CPLR TUNE KW.

Set mode switch to AM Key transmitter.

Set frequency to 1802 MHz Key transmitter.
Set frequency to I 602 MHz Key transmitter
Perform the following procedure for each setting listed Set and tune to the tune frequency Reset frequency to the check frequency. Set mode switch to CW and key transmitter Check both the FWD and REFL power.

NOTE
The frequencies below do not necessarily match the average powers listed in the Indication column for this step.

Tune Frequency	Check Frequency
1.604	1.602
2.004	2.002
4.001	4.000
8.001	8.000
12.001	12.000
16.001	16.001
20.001	20.000
24.001	24.000
29.999	29.998

Set mode switch to OFF Disconnect cabling between receiver-transmitter and coupler unit. Reassemble Antenna Coupler Unit Antenna Coupler Unit CU-22291URC-92 checkout is now complete. Coupler unit is now serviceable.
Set mode switch to OFF Remove Control Logic CCA 2A1. Set mode switch to AM. Jumper 2XA1-12 to ground.

Set mode switch to OFF Remove Control Logic CCA 2A1 Set mode switch to CPLR TUNE KW.

COUPLER STATUS FAULT indicator Is Illuminated, transmitter unkeys and drive motors stop driving.

NOTE

If the time delay runs out during this test, depress TUNE START once more If tuning occurs the second tune the indication is good
Antenna Coupler completes tune cycle,
COUPLER STATUS FAUI,T indicator goes out and COUPLER STATUS READY indicator illuminates.
COUPLER STATUS READY indicator goes out And COUPLER STATUS FAULT indicator illuminates.
COUPLER STATUS FAULT indicator goes out and COUPLER STATUS READY indicator illuminates.
COUPLER STATUS FAULT indicator illuminates.
COUPLER STATUS READY indicator illuminates.

NOTE

The Antenna Coupler Control gain adjustment can affect both the REFL power indication and tuning Normal gain setting is about 14.5 VDC \pm 0.5 VDC but a sight adjustment may be necessary If some frequencies do not tune, adjust the gain slightly clockwise If the REFL power indication is a little high, adjust the gain slightly counterclockwise The final gain control setting must satisfy both requirements If not, proceed to the troubleshooting reference for this step Antenna coupler completes each tune cycle Also the power readings should be approximate to one of the acceptable FWDIREFL ratios below

Average FWD (watts)	REFL (or less)
20	0.8
30	1.2
40	16
50	2.0
60	2.4
70	2.8
80	3.2
100	4.0

Yes: step 4a
No: step33

Yes: step $4 b$
No: step 34

Yes: step 4c
No: step 35
Yes: step 4d
No: step 37
Yes: step 4 e
No: step 37
Yes: step 5a
No: step 37
Yes: step 6a
No: step39

Yes: step 37
No: step39
Yes: step 9
No: step 10
Yes: step37
No: step 11
Yes: step37
No: step 39
Yes: step 12
No: step 13

Table 3-3. Checkout/Troubleshoot the Antenna Coupler CU-2229/URC-92-Continued

ACTION

Set mode switch to OFF Remove Control Logic CCA 2A1 Set mode switch to AM

CAUTION

When testing on or jumpering connector contacts, take care not to short adjacent contact Jumper 2XA1-7 to ground

Set mode switch to OFF Remove Control Logic CCA 2A1 Set mode switch to CPLR TUNE KW

CAUTION

When testing on or jumpering connector contacts, take care not to short adjacent contacts Jumper2XAI-6toground

Set frequency to 1.802 MHz . Depress TUNE START

Set mode switch to OFF. Remove Phase and Amplitude CCA 2A2

CAUTION

When testing on or jumpering connector contacts, take care not to short adjacent contacts

CAUTION

Insure roller on 2L4 is positioned near center of travel before beginning the following checks

NOTE

For steps requiring jumpers, remove jumper before motor drives to end step
Set mode switch to AM. Momentarily jumper 2XA2-V to ground.
Momentarily jumper 2XA2-17 to ground
Connect VTVM between 2XA2-U and ground

CAUTION

Ensure VTVM is isolated from ground Connect VTVM between 2XA2-16 and 2XA2-U

Set mode switch to CPLR TUNE KW
VTVM between 2XA2-14 and ground. Depress and hold TUNE START
Set mode switch to OFF. Connect multimeter between 2XA2-7 and ground
Connect multimeter between 2XA2-15 and ground
Drive motor 2M2 drives
Set mode switch to OFF. Remove Phase and Amplitude CCA 2A2

CAUTION
When testing on or jumpering connector contacts, take care not to short adjacent contacts Ensure the 2C1 sensor bar is positioned near center of travel before beginning the following checks

NOTE
For steps requiring jumpers, remove jumper before sensor contacts micro switches Set mode switch to AM. Momentarily jumper 2XA2-4 to ground
Momentarily jumper 2XA2-5 to ground
Connect VTVM between 2XA2-3 and ground

INDICATION
NEXT STEP

Transmitter keys on

COUPLER STATUS TUNING indicator Illuminates.
Both drive motors, 2 M 1 and 2 M 2 , drive.

Drive motor 2M1 drives.

Motor 2M2 rotates clockwise (viewed from shaft end).
Motor 2M2 rotates counterclockwise
Meter indicates + 10 VDC + 0.8 VDC

Meter indicates a voltage difference(+ or -)
Connect Meter indicates +3 VDC to +5 VDC

Meter indicates 200 ohms or more

Meter indicates 1000 ohms or more

Yes: step 37
No: step39

Yes: step37
No: step 39
Yes: step 3b
No: step 11
Yes: step 16
No: step 23

Yes: step 17
No: step 39
Yes step 18
No: step 39
Yes step 19
No: step 39

Yes: step 20
No: step 39
Yes: step 21
No: step 39
Yes: step 22
No: step 39
Yes: step 35
No: step 39
Yes: step 24
No: step 30

Yes: step 25
No: step 39
Yes: step 26
No: step 39
Yes step 27
No: step 39

Table 3-3. Checkout/Troubleshoot the Antenna Coupler CU-2229/URC-92-Continued
ACTION
INDICATION

CAUTION

Ensure VTVM is Isolated from ground Connect VTVM between 2XA2-2 and 2XA2-3

Set mode switch to OFF. Connect multimeter between 2XA2-8 and ground.
Connect multimeter between 2XA2-11 and ground.
Set mode switch to OFF Remove Control Logic
CCA 2A1. Set mode switch to AM. Connect
VTVM between 2XA1-3 and 2XA 1-F
Connect VTVM between 2XA1-B and ground
Set mode switch to OFF Reinstall Control Logic CCA 2A2 Remove Phase and Amplitude Control
CCA 2A2 Set mode switch to CPLR TUNE KW. Connect VTVM between 2XA2-10 and ground. Set mode switch to OFF Remove Control Logic CCA 2A1 Set mode switch to CPL,RTUNE KW

CAUTION
When testing on or jumpering connector contacts, take care not to short adjacent contacts Connect VTVM between 2XA1-2 and ground

Set mode switch to OFF Replace Control Logic CCA 2A1 with a known good Control Logic CCA Set mode switch to CPLR TUNE KW TUNE START.

Set mode switch to OFF Replace Control Logic CCA 2A1 with a known good Control Logic CCA Set mode switch to CPLR TUNE KW. Depress TUNE START to tune antenna coupler Set mode switch to CW then return to CPLR TUNE KW Set mode switch to OFF Replace Control Logic CCA 2A1 with a known good Control Logic CCA Set mode switch to CPLR TUNE KW TUNE START to tune antenna coupler Set mode switch to CW then return to CPLR TUNE KW Finally, set mode switch to AM and key transmitter
Replace Control Logic CCA 2A1 Route original Control Logic CCA to next higher maintenance level for repair
Replace Phase and Amplitude Control CCA 2A2 Route original Phase and Amplitude Control CCA to next higher maintenance level for repair Unit not authorized for repair at this maintenance level. Route Antenna Coupler CU-2229/URC-92 to next higher maintenance level for repair

Meter indicates a voltage difference(+ or -)	Yes: step 28
	No: step 39
Meter indicates 1000 ohms or more.	Yes step 29
Meter indicates 1000 ohms or more	No: step 39
	Yes: step 38
Meter indicates greater than 0.1 VDC	No step 39
	Yes step 31
Meter indicates +12 VDC ± 4 VDC	No: step 39
Meter indicates 0 VDC ± 0.5 VDC	Yes step 32
	No: step 39
	Yes step 38
	No: Reinstall Phase
	and Amplitude
	Control CCA
2A2, go to	
	step 37

Meter indicates $+10 \mathrm{VDC} \pm 0.8 \mathrm{VDC} \quad$ Yes step 37

NOTE

If the time delay runs out during this test, deDepress press TUNE START once more If tuning occurs the second time, the indication is good Antenna Coupler completes tune cycle, COUPLER STATUS FAULT indicator goes out and COUPLER STATUS READY illuminates.

COUPLER STATUS READY indicator goes out and COUPLER STATUS FAULT indicator illuminates.

COUPLER STATUS FAULT indicator goes out and COUPLER STATUS READY indicator Depress illuminates.

Yes: step 28
No: step 39
step 29
No: step 39 No step 39

Yes step 31
No: step 39

Yes step 32
step 39
No: Reinstall Phase nd Amplitude

2A2, go to
step 37

No: step 39

Yes step 37
No: step 39

Yes step 37
No: step39

Yes step37
No: step 39

Section IV. MAINTENANCE

3-7. General.

Direct support maintenance of the AN/URC-92 is limited to the replacement of interconnecting cables, circuit card replacement and the procedures outlined in this manual.
3-8. Spectrum Generator (8), Low Digit Generator (9), Translator (10), and VHF Divider (11) Circuit Card Assemblies (Fig 3-3)
a. Removal.
(1) Remove transceiver top cover.
(2) Remove four mounting screws (1) and lock washers (2) from top of Synthesizer Assembly.
(3) Lift off top protective cover (3).
(4) Gently extract circuit card
b. Replacement.

CAUTION

Upon reinstallation of these circuit cards, Component side must face rear of transceiver.
(1) Gently reinstall circuit card.
(2) Position protective cover in place (3).
(3) Reinstall four mounting screws (1) and washers (2).
(4) Reinstall transceiver top cover.

3-9. VHF VCO (4) Circuit Card Assembly

 (Fig 3-3)a. Removal.
(1) Remove transceiver top cover.
(2) Remove transceiver bottom cover.
(3) Remove six mounting screws (12) attaching front panel (13).
(4) Pull front panel away from receiver.
(5) Disconnect electrical quick disconnect 1A3P1
(7) from 1A4A5J1 on front of VCO board (4).
(6) Remove four mounting screws (6) and washers
(5) from front of VCO board (4)
(7) Gently slide out VCO board.
b. Replacement.
(1) Gently reinstall circuit card.
(2) Reinstall four mounting screws (6) and washers (5).
(3) Reconnect electrical quick disconnect 1A3P1 (7) to 1A4A5J1 on front of VCO board (4).
(4) Position front panel in place.
(5) Reinstall six mounting screws (12).
(6) Reinstall transceiver bottom cover.
(7) Reinstall transceiver top cover.

3-10. VHF Mixer (14), IF Filter (15), Side-band Generator (16), and Audio (17) Circuit Card Assemblies
(Fig 3-3)
a. Removal.
(1) Remove transceiver top cover.
(2) Remove four mounting screws (1) and washers
(2) from top of Receiver/Exciter.
(3) Lift off top protective cover (3).
(4) Gently extract circuit card.
b. Replacement.

CAUTION

Upon reinstallation of these circuit cards, component side must face front of transceiver.
(1) Gently reinstall circuit card.
(2) Position protective cover (3) in place
(3) Reinstall four mounting screws (1) and washers (2).
(4) Reinstall transceiver top cover.

3-11. RF Power Amplifier Assy
a. Removal.
(1) Remove four mounting screws and washers attaching heat sink and RF power amplifier to rear panel.
(2) Carefully pull heat sink and RF power amplifier away from back panel.
(3) Disconnect coax cable connector.
(4) Remove two retaining nuts and washers from connector 1A8P1.
(5) Disconnect connector 1A8P1.
(6) Disconnect connector 1A8P3.
b. Replacement.
(1) Reinstall/replace gasket.
(2) Reconnect connector 1A8P3.
(3) Reconnect connector 1A8P1.
(4) Reinstall two retaining nuts and washers on connector 1A8P1.
(5) Reconnect coax cable connector.
(6) Position heat sink and RF power amplifier in place.
(7) Reinstall four mounting screws and lockwashers.

3-12. Antenna Coupler Tuning Control

(Fig 3-4

a. Removal.
(1) Remove transceiver top cover.
(2) Remove four mounting screws (4) and lockwashers (3) from front tuning control (2) 1A2.
(3) Disconnect connector 1A2P1 from 1A8J7.
(2) Reconnect jack 1A2P2 to 1A1J2.
(4) Carefully pull tuning control forward
(5) Disconnect jack 1A2P2 from 1A1J2.
b.Replacement
(1) Reinstall/replace gasket (1)
(3) Position tuning control (2) 1A2 in place
(4) Reinstall four mounting screws (4) and lockwashers (3).
(5) Reconnect connector 1A2P1 to 1A8J7
(6) Reinstall transceiver top cover.

Figure 3-3. Front Panel and Circuit Card Assemblies.

Figure 3-4. Antenna coupler Tuning Control.
Section V. ADMINISTRATIVE STORAGE

3-13. Preparation for Storage

Prepare the AN/URC-92 for administrative storage in accordance with the following:
a. Perform the Preventive Maintenance Checks and Services outlined in Chapter 4.
b. Perform the Preventive Maintenance Checks and Services outlined in this chapter.
c. Place all loose components in a plastic bag and secure the bag to one of the handles on the RT1277/URC-92
d. The RT-1277/URC-92 and the CU-22291 URC92 are completely sealed and do not require any special storage precautions The units may be stored in temperatures ranging from 55 to $85^{\circ} \mathrm{C}$ at humidities up to 100% without damage.

CHAPTER 4

GENERAL SUPPORT

Section I. GENERAL

4-1. Scope

This chapter contains checkout, troubleshooting, repair, removal, replacement and other maintenance required for general support of Radio Set AN/URC-92. The checkout and troubleshooting procedures are separated into a receiver-transmitter RT-1277/URC-92
checkout/troubleshoot and an antenna coupler CU-2229/URC-92 checkout/troubleshoot.

4-2. Voltage Measurements

Applicable voltages and acceptable tolerances are listed in Table 4-1

Section II. TOOLS AND EQUIPMENT

4-3. Test Equipment

Refer to TM 11-5820-873-12 Appendix D, TM-11-5820-873-20P and TM 11-5820-873-34P. Also, a BNC to clip lead cable is required (Fig 4-1).

Table 4-1 Voltage Measurements
$0 \quad$ VDC $\pm 0.2 \quad 12$ VDC ± 0.8
$2 \quad \mathrm{VDC} \pm 0.5 \quad 22 \mathrm{VDC} \pm 1.5$
$3 \quad$ VDC ± 0.25
$5 \quad$ VDC ± 0.25
7.7 VDC ± 0.8
$9 \quad$ VDC $\pm 08 \quad 12 \mathrm{VAC} \pm 08$
9.56 VDC $\pm 0.8 \quad 20$ VAC ± 1.5

10 VDC $\pm 0.8 \quad 115$ VAC ± 15
$28 \mathrm{VDC} \pm 1.5$

EL5EB052
Figure 4-1. BNC/Clip Lead Cable

Section III. CHECKOUT/TROUBLESHOOT

4-4. General

This section contains checkout and troubleshooting for both the receiver-transmitter and the antenna coupler. Completion of a checkout signifies a particular unit is operationally ready for use. Troubleshooting procedures are designed to function from incorrect indications in the checkout.

4-5. Receiver-Transmitter RT-1277/-URC-92 Checkout/Troubleshoot.

The following procedures in Table 4-2 will establish the operational readiness of RT-1277/URC-92 receivertransmitter Successful completion of the checkout
portion (steps 1 thru 16) indicates the receivertransmitter is operationally ready for use Troubleshooting procedures are designed to function from incorrect indications in the checkout Following any repair action, the test technician must return to step 1 of the checkout unless directed differently by the procedure The troubleshooting does not consider incorrect or missing supply voltages to subassemblies Before any replace/repair action is accomplished on a subassembly, the test technician should verify all necessary supply voltages at the subassembly. Incorrect or missing supply voltages should be repaired using conventional troubleshooting methods. Refer to the List of Illustrations for the appropriate schematics

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92

Remove top and bottom covers. Connect 115 VAC power cable to POWER connector 1A8J3. Connect 50 ohm dummy load through a thruline wattmeter to ANT jack 1A8J1. Connect a known good Antenna Coupler CU-2229/URC-92 to ACCESSORY jack 1A8J4. Set XMIT GAIN control fully counterclockwise Set VOLUME control clockwise, 1/4 turn Push VFO control in (off). Set DIM control fully clockwise. Set mode switch to LSB.

Check pilot lamp and display.
Rotate DIM control one position counterclockwise. Then rotate DIM control another position counterclockwise.
Set FREQ CONTROL switch to A. Set FREQUENCY A controls to 1.5000 MHz . Rotate 100 KHz control through positions 4, 3, 2, 1, and 0 .
Rotate 100 KHz control through positions 6, 7, 8, and 9 .
Set FREQ CONTROL switch to B. Set FRE QUENCY B controls to 1.5000 MHz . Rotate 100 KHz control thru positions $4,3,2,1$, and 0 .

Rotate 100 KHz control thru positions $6,7,8$, and 9 .
Set FREQ CONTROL switch to A. Set FREQUENCY A controls to 1.6000 MHz . Increase VOLUME control until noise is heard in speaker.
Connect known good headphone to 1A1J3. Disconnect headphone. Connect known good handset. Disconnect handset. Rotate RF GAIN control counterclockwise and observe meter.
Return RF GAIN control to fully clockwise position and VOLUME control to $1 / 4$ turn clockwise. Connect a known good CW key at the KEY jack. Set FREQUENCY A controls to 29.9950 MHz. Set mode switch to CW. Depress CW key.

ANTENNA COUPLER CONTROL meter lamp Yes: step 2b
luminates.
Pilot lamp and display illuminate.
No: step 29
Pilot lamp and display intensity dim, then go out. Yes: step 3a No: step 42 Meter lamp retains intensity, then goes out.
LOW FREQ LIMIT lamp illuminates and speaker noise Yes: step 3b No: step 44 level decreases.

LOW FREQ LIMIT lamp is out and receiver transmitter Yes: step 3c No: step 44 is enabled.
LOW FREQ LIMIT lamp illluminates. Yes: step 3d No: step 50

LOW FREQ LIMIT lamp is out
Yes. step $3 e$ No: step 50
Noise is heard in speaker.
Yes: step 3f No: step 54

Noise is heard in headphone.
Yes: step3g No: step 280
Noise is heard in ear piece of handset. Yes: step 3h No: step 289
Front panel meter reading increases to almost full Yes: step 4a No: step 64 scale deflection.
Sidetone is heard in speaker.
Yes: step 4b No: step 77

Wattmeter indicates $100 \mathrm{~W} \pm 10 \mathrm{~W}$.
Yes: step 5a No: step 74
Depress CW key and observe wattmeter.
Connect oscilloscope across dummy load. Set oscilloscope to
. $2 \mathrm{~V} /$ division. Set FREQUENCY A controls to 29.9995 MHz .
Set mode switch to LSB. Connect microphone to MIC 4-2A, less than 2 V peak-to-peak.
connector. Key microphone and observe oscilloscope.
Set mode switch to USB. Key microphone and observe Oscilloscope displays waveform similar to Fig. 4-2A, Yes: step 5c No: step 163 oscilloscope.
less than 2 V peak-to-peak.
Set oscilloscope to $50 \mathrm{~V} /$ division. Key, and speak into Oscilloscope displays waveform similar to Fig. 4-2A, Yes: step 5d No: step 165 microphone. Increase XMT GAIN control until no further 190 V peak-to-peak, maximum.
increase peak-to-peak voltage is observed.
Set mode switch to LSB Key and speak into microphone. Oscilloscope displays waveform similar to Fig. 4-2A, Yes: step 5e No: step 175 Increase XMT Gain until no further increase in peak-to- 190 V peak-to-peak.
peak voltage is observed.
Set mode switch to AM. Key and speak into microphone. Oscilloscope displays waveform similar to Fig. 4-B, Yes: step 6a No: step 177 Observe oscilloscope.

Connect frequency counter to oscilloscope vertical amplifier Frequency counter and front panel readouts agree for Yes: step6b No: step 185 output. Connect oscilloscope across dummy load. Set each frequency.
FREQUENCY A controls to 1.6000 MHz . Turn XMT GAIN
Control fully counterclockwise. Key microphone. Starting with 100 Hz control, rotate each FREQUENCY A control through its entire range.

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

ACTION

Set FREQ CONTROL switch to B. Repeat step 6a using FREQUENCY B controls.
Set FREQ CONTROL switch to A. Pull out VFO PULL control (VFO on).
Connect frequency counter to oscilloscope vertical amplifier output. Connect oscilloscope across dummy load. Set FREQUENCY A controls to 2.000 MHz . Key microphone. Rotate VFO PULL control through its entire range.
Set FREQ CONTROL to A XMT B RCV. Key microphone. Rotate FREQUENCY B, 10 KHz control. Release microphone key. Observe front panel readout and rotate FREQUENCY A, 10 KHz control.
Disconnect antenna coupler control cable. Disconnect CW key and mic. Remove dummy load from ANT jack 1A8J1. Connect signal generator to ANT jack 1A8J1. Connect Audio VTVM to PHONE jack 1A1J3. Set mode switch to LSB. Set FREQ CONTROL to B Set FREQUENCY B controls to 29.9994 MHz . Adjust VOLUME CONTROL for VTVM indication of -20 dB . Set signal generator output level to 0.5 uV . Adjust signal generator frequency to approximately 29.9994 MHz , until VTVM indication peaks.
Repeat step 8a substituting the following FREQUENCY B, and signal generator frequency settings.
16.0100 MHz 10.0100

MHz 7.5100 MHz
5.0100 MHz
3.5100 MHz
2.0100 MHz
1.6100 MHz

Set mode switch to USB Return FREQUENCY B switches to 29.9994 MHz . Adjust signal generator frequency to approximately 29.9994 MHz , until VTM indication peaks.
Set mode switch to AM, FREQUENCY B controls to 29.9994 MHz . Signal generator output level to 3.0 uV , frequency to $29.9994 \mathrm{MHz}, 30 \%$, 1 KHz modulation. Adjust signal generator for peak VTVM indication. Adjust VOLUME control for -10 dB VTVM Indication. Remove modulation from signal generator output. Set mode switch to LSB. Set FREQUENCY B switches to 20.000 MHz . Disconnect VTVM from PHONE jack. Increase VOLUME control until noise is heard. Rotate 1 MHz control thru each of its positions. Set mode switch to OFF. Disconnect control cable at receiver-transmitter 1A8J4. Connect multimeter between ACCESSORY Connector 1A8J4-P and ground. Set mode switch to AM. Slowly adjust ANTENNA coupler CONTROL gain control 1A2R2 thru its entire range.
Reset gain control 1A2R2 to $14.5 \mathrm{VDC} \pm 0.5 \mathrm{VDC}$. Set mode switch to OFF. Disconnect dummy load from antenna jack IA8JI. Connect RF and control cables between the receiver-transmitter and a known good CU-2229/URC-92 Antenna Coupler Connect a 50 ohm dummy load to the Antenna Coupler antenna post and ground post using a BNC/clip lead cable.

INDICATION

Frequency counter and front panel readouts agree for each frequency.
VFO lamp illuminates.
Frequency counter indicates $2.0000 \mathrm{MHz} \pm 5 \mathrm{KHz}$ Yes: step7a No: step 218 minimum.

Frequency counter indicates 1.6000 MHz and front panel Yes: step 7b No: step 223 readouts agree.
No readout change occurs
Audio VTVM indicates -10 dB or more.

Audio VTVM indicates - 10 dB or more.

Audio VTVM indicates at least -10 dB or more.

VTVM indicates less than -20 dB.

At each position, noise blanks momentarily then returns.

Meter indicates a range between +12 and $+22 \mathrm{VDC} \pm 10 \%$

Yes: step 9a No: step292

Yes: step 9b No: step 295

Yes: step 9c No: step 242

Yes: step 10 No: step 297

Yes: step 11 No: step 264

Step 12

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

ACTION
Set mode switch to CPLR TUNE KW.

WARNING
Several kilovolts are present at the Antenna Coupler antenna post, E1, during steps 13 thru 14b. Exercise caution and do not contact antenna post E1.

Depress TUNE START.

Set frequency to 4.0 MHz . Set REFL FWD POWER MONITOR switch to REFL. Depress TUNE START and observe meter 1A2M1.
Set REFL FWD POWER MONITOR switch to FWD. Set frequency to 12.995 MHz . Depress TUNE START and observe meter 1A2M1.
Set mode switch to OFF Connect DC power cord to 1A8J3. Connect wattmeter and dummy load to ANT jack 1A8J1. Connect CW key to Key jack 1A1J4. Check DC fuse 1A8F3 for proper value for 13 VDC operation. Check 1A6TB2 wiring for 13 VDC operation, refer to Operator and Organizational Maintenance Manual TM 11-5820873-12. Set 1A6A2-S1 for 13 VDC operation. Set mode switch to CW Depress CW key.

Set mode switch to OFF. Replace DC fuse 1A8F3 with appropriate fuse for 26 VDC operation. Rewire 1A6TB2 for 26 VDC operation., refer to Operator and Organizational Maintenance Manual TM 11-5820-873-12 Set 1A6A2-S1 for 26 VDC operation. Depress CW key. Set mode switch to CW.
Set mode switch to OFF. Disconnect all external cabling and test equipment.
Reassemble Receiver-Transmitter RT-1277/ URC-92.
Ensure inverter is tagged properly for 26 VDC operation.
Recelver-Transmltter RT-1277/URC-92 checkout is now complete. Receiver-Transmitter is operationally ready. Connect multimeter between 1A6P1, pins 1 and 3, then between pins 5 and 7 .
Connect multimeter between 1A6XA1-B and Ground.
Connect multimeter between 1A1S16-8 and Ground.
Connect multimeter between meter lamp center contact and ground.
Disconnect AC power cord. Remove 1A8F1 and 1A8F2 from rear panel. Check fuses 1ASF1 and 1A8F2.

Check 1A1S13C, front, and 1A1S13B, rear.
Connect multimeter between 1A6XA1-C and ground
Check transistor Q102.

Set mode switch to OFF. Check fuse 1A6F2.

NDICATION
COUPLER STATUS FAULT indicator

NOTE
If COUPLER STATUS READY indicator does not illuminate during this step, depress TUNE START once more. If COUPLER STATUS READY indicator illuminates after the second time, the indication is good.
COUPLER STATUS FAULT indicator goes out and COUPLER STATUS TUNING indicator illuminates. When the antenna coupler is tuned, COUPLER STATUS TUNING indicator goes out and COUPLER STATUS READY indicator illuminates.
Meter 1A2M1 indicates a refl power level.

Meter 1A2M1 indicates a fwd power level.

Clear audio tone with minimal background noise in speaker. Wattmeter indicates $100 \mathrm{~W} \pm 10 \mathrm{~W}$.

Clear audio tone with minimal background noise heard in speaker. Wattmeter indicates $100 \mathrm{~W} \pm 10 \mathrm{~W}$

Yes: step 13
No: step 265

Yes: step 14a
No: 266

Yes: step 14b
No: step 272
Yes: step 15a
No: step 274
Yes: step 15b
No: step 277

Yes: step 16a
No: step 303

Yes: step 18
No.

Ko:

Yes: replace meter lamp.

No: replace fault
component.
No: replace 1A1S13

No: replace transistor
Yes: step 290
No: replace fuse 1A6F2

Figure 4-2. General Support Checkout/Troubleshoot the Receiver-Transmitter Waveforms

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

STEP	ACTION
26	Connect multimeter between 1A1S16-7 and ground.
27	Set mode switch to OFF. Remove 1A6A1 from 1A6XA1. Check continuity between 1A6XA1 pins C and 3.
28	Continuity check 1A6TB1 pins E1 to E3, and pins E5 to E6.
29	Connect multimeter between 1A6XA1-15 and ground.
30	Connect multimeter between 1A1S16-3 and ground.
31	Connect multimeter between 1A1DS3 center contact and ground. Connect multimeter between 1A6XA1-P and ground.

INDICATION
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Continuity checks good.
Continuity checks good.
Multimeter indicates $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.
Multimeter indicates $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.
Multimeter indicates $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.

Transistor 1A6Q103 checks good.
Fuse checks good.
Continuity checks good.

Components check good.

Multimeter indicates $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.
Multimeter indicates +10 to +22 VDC.
Multimeter indicates $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.
Multimeter indicates $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.
Multimeter indicates $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.

Multimeter indicates + 3 VDC ± 0.25 VDC.
Components check good.

Multimeter indicates +12 VDC ± 0.8 VDC.
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.

1A1CR16 checks good.

1A1S15 checks good.

Components check good.
LOW FREQ LIMIT lamp illuminates sometimes.
Set FREQ CONTROL switch to B. Set FREQUENCY B controls to 1.5000 MHz . Rotate 100 KHz control thru positions 4, 3, 2, 1 and 0.
Check the following components 1A1S7A rear, 1A1S8C rear 1A1S9B rear, 1A1S15 and 1A1CR37.

NEXT STEP
Yes: replace 1A1S16
No: step 285
Yes: step 28
No: replace transformer
1A6T1.
Yes: step 285
No: replace transformer 1A6T1.
Yes: step 31
No: step 32
Yes: step 31
No: step 36
Yes: replace 1A1DS3
No: step 285
Yes: step 33
No: step 35
Yes: step 34
No: replace transistor 1A6Q103
Yes: step 286
No: replace fuse 1A6A1F3
Yes: step 36
No: replace transformer 1A6T1
Yes: step 37
No: replace faulty com-
ponent.
Yes: step 39
No: step 38
Yes: step 285
No: step 286
Yes: step 288
No: step 40
Yes: step 289
No: step 41
Yes: step 285
No: replace switch 1A1S16
Yes: step 43
No: replace switch 1A1S16
Yes: step 285
No: replace faulty com ponent.
Yes: replace 1A1DS1
No: step 45
Yes: step 46
No: step 48
Yes: step 47
No: step 49
Yes: step 48
No: replace diode 1A1CR16
Yes: step 49
No: replace switch 1A1S15
Yes: step 52
No: replace fault component.
Yes: step 52
No: replace switch 1A1S9
Yes: step 285
No: replace fault
component.

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

STEP

Connect multimeter between 1A3A5-B and ground.
Connect multimeter between 1A1A5XA4-14 and ground.
Connect oscilloscope probe to 1A1A1-E3, ground lead to ground.
Connect oscilloscope to speaker 1A1LS1, signal input terminal, ground lead to ground.

Check resistor 1A1R50.

Check 1A1J3.
Connect oscilloscope probe to 1A3A5-M, ground lead to ground.
Connect oscilloscope probe to 1A1A1-E4 ground lead to ground.
Connect oscilloscope probe to 1A3XA4J4-18, ground lead to ground.

Check resistor 1A1R51.
Connect multimeter between 1A3XA4J4-12 and ground.
Connect multimeter between 1A3A5-E7 and ground.
Rotate RF GAIN control fully CCW. Connect multimeter between 1A3XA4J4-15 and ground.
Connect multimeter between 1A3A5-E12 and ground.
Connect multimeter between 1A2M1 positive(+) pin and ground.
Connect multimeter between 1A3A5-A and ground.
Connect multimeter between 1A3XA4J4-14 and ground.
Connect multimeter between 1A8P2 pins 12 and 13 .
Check components 1A8K1 and 1A8CR1.

Connect multimeter between 1A5XA4-11 and ground
Remove Sideband Generator CCA 1A3A3.

Check components 1A1R5, 1A1R54, and 1A1CR50.

Connect oscilloscope probe to 1A3XA3J3-16, ground lead to ground. Depress CW key.
Remove 1A8P3 from 1A7J2. Connect wattmeter to 1A7J2 center contact, ground lead to ground.
Depress CW key.
Reconnect 1A7J2 to 1A8P3. Remove 1A8P5 from 1A5J4. Connect wattmeter to 1A5J4 center contact ground lead to ground. Depress CW key.
Connect frequency counter to 1A3XA3J3-D, ground lead to ground. Depress CW key.
Connect frequency counter to 1A3XA4J4-4, ground lead to ground. Depress CW key.

Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$

Multimeter indicates $+10 \mathrm{VDC} \pm 2 \mathrm{VDC}$.

Check for noise above ambient level.

Check for noise above ambient level.

1A1R50 checks good.

1A1J3 checks good.
Check for noise above ambient level.

Check for noise above ambient level.

Check for noise above ambient level.

1A1R51 checks good

Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.

Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$

Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$

Multimeter indicates + 12 VDC ± 0.8 VDC

Multimeter indicates + 12 VDC ± 0.8 VDC

Multimeter indicates + 12 VDC ± 0.8 VDC

Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$

Multimeter Indicates $0 \mathrm{~V} \pm 2 \mathrm{VDC}$.

Components check good.

Multimeter indicates + 12 VDC ± 2 VDC

Multimeter indicates + 12 VDC ± 2 VDC

Components check good.

Oscilloscope displays waveform similar to Fig. 4-2C.
Wattmeter indicates more than 90 watts.

Wattmeter indicates more than 90 watts

Frequency counter indicates 1 KHz

Frequency counter indicates 1 KHz

Yes: step 53
No: step 285
Yes: step 290
No: step 287
Yes: step 55
No: step 54
Yes: replace speaker 1A1LS1
No: step 56
Yes: step 57
No: replace resistor 1A1R50
Yes: step 285
No: replace 1A1J3
Yes: step 59
No: step 60
Yes: step 250
No: step 61
Yes: step287
No: step 62
Yes: step 285
No: replace resistor
1A1R51
Yes: step 290
No: step 63
Yes: step 287
No: step 63
Yes: step 65
No: step 67
Yes: step 66
No: step 287
Yes: replace meter 1A2M
No: step 69
Yes: step 68
No: step 73
Yes: step 290
No: step 287
Yes: step 70
No: step 71
Yes: step 285
No: replace faulty component.
Yes: step 292
No: step 72
Yes: step 294
No: reinstall Sideband Generator CCA 1A3A3 and go to step 285.
Yes: step 285
No: replace faulty component.
Yes: step 75
No: step 102
Yes: step 76
No: step 79
Yes: step 285
No: step 82
Yes: step 78
No: step 290
Yes: step 290
No: step 286

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

$\begin{aligned} & \text { STEP } \\ & 79 \end{aligned}$	ACTION	INDICATION	NEXT STEP
	Reconnect 1A7J2 to 1ASP3. Connect oscilloscope to	Oscilloscope displays waveform similar to Fig. 4-2D.	Yes: step 80
	1A3XA1J1-5, ground lead to ground. Depress CW key.		No: step 86
80	Remove 1A3P3 from 1A7J1. Connect VTVM(AC) to 1A3P3	VTVM indicates more than 100 mV .	Yes: step 81
	center contact, ground lead to ground. Depress CW key.		No: step 90
81	Connect multimeter between 1A7A1J3-F and ground. Depress	Multimeter indicates + 28 VDC $\pm 1.5 \mathrm{VDC}$.	Yes: step 293
	CW key.		No: step 92
82	Reconnect 1A5J4 to 1ASP5. Remove 1A8P4 from 1A5J2.	Wattmeter indicates more than 90 watts.	Yes: step 83
	Connect wattmeter to 1A8P4 center contact ground lead to ground. Depress CW key.		No: step 285
83	Reconnect 1A5J2 to 1A8P4. Connect multimeter between	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 292
	1A8P2-8 and ground. Depress CW key.		No: step 93
84	Continuity check 1A1J4 center contact to 1A1P2-J.	Continuity checks good.	Yes: step 85
			No: step 94
85	Continuity check 1A3XA3J3-2 to 1A3A5-J.	Continuity checks good.	Yes: step 294
			No: step 287
86	Connect oscilloscope probe to 1A3XA2J2-16, ground lead to	Oscilloscope displays waveform similar to Fig. 4-26.	Yes: step 90
	ground. Depress CW key.		No: step 287
87	Connect multimeter between 1A3A5-R and ground.	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 88
			No: step 89
88	Connect multimeter between 1A3A5XA2J2-8 and ground.	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 295
			No: step 287
89	Check switch 1A1S13 front.	Switch checks good.	Yes: step 285
			No: replace switch 1A1S13.
90	Reconnect 1A7J1 to 1A3P3 Connect VTVM (AC) to	VTVM indicates more than 100 m V.	Yes: step 91
	1A3XA1J1-8. Depress CW key.		No: step 95
91	Connect VTVM (AC) to 1A3A56-E20. Depress CW key.	VTVM indicates more than 100 m V.	Yes: step 285
			No: step 287
92	Connect multimeter between 1A5J1-18 and ground. Depress	Multimeter indicates + 28VDC $\pm 2.5 \mathrm{VDC}$.	Yes: step285
	CW key.		No: step 292
93	Check switch 1 A1SB, rear, and diode 1A1CR51.	Components check good.	Yes: step 285
			No: replace faulty component.
94	Continuity check 1A1S13, rear pin 2 to pin 6.	Continuity checks good	Yes: step 285
			No: replace switch 1A1S13
95	Connect multimeter between 1A3XA1J1-U and ground.	Multimeter indicates less than + 1.2 VDC	Yes: step 96
	Depress CW key.		No: step 110
96	Connect multimeter between 1A3XA1J110 and ground.	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$	Yes: step 97
	Depress CW key.		No: step 287
97	Connect multimeter between 1A3XA1J1-13 and ground.	Multimeter indicates less than +8 VDC	Yes: step 98
	Depress CW key.		No: step 112
98	Connect frequency counter to oscilloscope vertical output.	Oscilloscope displays waveform similar to Fig. 4-2E,	Yes: step 99
	Connect oscilloscope probe to 1A3A5-E18 ground lead to ground. Depress CW key.	minimum amplitude 300 millivolts. Frequency counter indicates $80.75 \mathrm{MHz} \pm 10 \mathrm{KHz}$.	No: step 113
99	Connect oscilloscope probe to 1A3A5XA1J1-1, ground lead to	Oscilloscope displays waveform similar to Fig. 4-2E,	Yes: step 100
	ground.	minimum amplitude 300 millivolts. Frequency counter indicates $80.75 \mathrm{MHz} \pm 10 \mathrm{KHz}$.	No: step 287
100	Connect frequency counter to oscilloscope vertical output.	Frequency counter indicates between 111.0000 MHz	Yes: step 101
	Connect oscilloscope probe to 1A3A5-E24, ground lead to ground. Depress CW key.	and 122.0000 MHz.	No: step 114
101	Connect oscilloscope, with frequency counter, at vertical output	Frequency counter indicates between 111.0000 MHz	Yes: step 298
	to 1A3XA1J1-18, ground lead to ground.	and 122.0000 MHz .	No: step 287
102	Connect multimeter between 1A3XA3J310 and ground.	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 103
	Depress CW key.		No: step 106
103	Connect multimeter between 1A3XA3J3-T and ground.	Multimeter indicates less than + 0.5 VDC.	Yes: step 104
	Depress CW key.		No: step 115
104	Connect multimeter between 1A3XA3J3-S and ground.	Multimeter indicates less than + 1.4 VDC.	Yes: step 105
	Depress CW key.		No: step 118

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

STEP	ACTION	INDICATION	NEXT STEP
105	Connect frequency counter to 1A3XA3J3-F, ground lead to ground. Depress CW key.	Frequency counter indicates 10.5 MHz.	Yes: step 294 No: step 120
106	Connect multimeter between 1A3A5-E6 and ground. Depress	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 287
	CW key.		No step 107
107	Connect multimeter between 1A3A5-E32 and ground. Depress	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 287
	CW key.		No step 108
108	Check relay 1A8K1.	Relay checks good.	Yes: step 109
			No: replace relay 1A8K1 Yes: step 285
109	Check switch 1A1S13, rear.	Switch checks good.	No: replace switch A1S13
110	Connect multimeter between 1A7A1J3-B and ground. Depress	Multimeter indicates less than + 1.2 VDC.	Yes: step 111
	CW key.		No: step 293
111	Connect multimeter between 1A3A5-E13 and ground. Depress	Multimeter indicates less than +1.2 VDC.	Yes: step 287
	CW key.		No: step 274
112	Connect multimeter between 1A3XA2J2-P and ground.	Multimeter indicates less than + 8.0 VDC.	Yes: step 287
	Depress CW key.		No: step 285
113	Connect oscilloscope probe to 1A4XA3J3-11, ground lead to ground.	Oscilloscope displays waveform similar to Fig.	Yes: step 285 No: step 299
		$4-2 \mathrm{E}$, minimum amplitude 300 millivolts. Frequency counter indicates $80.75 \mathrm{MHz} \pm 10 \mathrm{KHz}$.	
114	Remove 1A3PI from 1A4A5-J1 Connect frequency counter to	Frequency counter indicates between 111.0000 MHz and 122.0000 MHz .	Yes: step 285
	oscilloscope vertical output. Connect oscilloscope probe to 1A4A5-J1 center pin, ground lead to ground.		No: step 123
115	Disconnect 1A8P2 from 1A5J1. Connect multimeter between	Multimeter indicates less than + 0.5 VDC.	Yes: step 116
	1A7A1J3-D and ground. Depress CW key.		No: step 293
116	Reconnect 1A8P2 to 1A5J1. Connect multimeter between	Multimeter indicates less than + 0.6 VDC.	Yes: step285
	1A5J1-0 and ground. Depress CW key.		No: step 118
117	Set mode switch to OFF. Disconnect 1A5P5 from 1A5J4.	Multimeter indicates 50 ohms ± 4 ohms.	Yes: step 292
	Connect multimeter between center contact of 1A8P5 and ground.		No: step 285
118	Connect multimeter between 1A5J1-9 and ground. Depress	Multimeter indicates less than + 1.4 VDC.	Yes: step 119
	CW key.		No: step 292
119	Connect multimeter between 1A3A5-E14 and ground.	Multimeter indicates less than + 1.4 VDC.	Yes: step 287
			No: step 285
120	Connect VTVM (AC) to IA4XAIJI-13 ground lead to ground.	VTVM indicates 0.1 V minimum.	Yes: step 121
			No: step 124
121	Connect VTVM (AC) to 1A4A6-E3, ground lead to ground.	VTVM indicates 0.1 V minimum.	Yes: step 122
	Depress CW key.		No: step 285
122	Connect VTVM (AC) to 1A3A5-E16, ground lead to ground.	VTVM indicates 0.1 V minimum.	Yes: step 287
	Depress CW key.		No: step 285
123	Reconnect 1A4A5-J1 to 1A3P1. Connect multimeter between	Multimeter indicates + 2.0 VDC $\pm 0.5 \mathrm{VDC}$.	Yes: step 300
	1A4XA5J5-4 and ground.		No: step 137
124	Connect frequency counter to oscilloscope vertical output jack.	Oscilloscope displays waveform similar to Fig. 4-2F,	Yes: step 125
	Connect oscilloscope probe to 1A8U1-6 ground lead to ground.	.3 V to .9 V peak-to-peak. Frequency counter indicates $5.0 \mathrm{MHz} \pm 5 \mathrm{~Hz}$.	No: step 138
125	Connect oscilloscope probe to 1A4XA1J1-S, ground lead to ground.	Oscilloscope displays waveform similar to Fig. 4-2F,	Yes: step 126
		.3 V to .9 V peak-to-peak. Frequency counter indicates $5.0 \mathrm{MHz} \pm 5 \mathrm{~Hz}$.	No: step 139
126	Connect multimeter between 1A4A6-E1 and ground.	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 127
			No: step 285
127	Connect multimeter between 1A4A6XA1J1-K and ground.	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 128
			No: step 297
128	Connect multimeter between 1A6A1-15 and ground.	Multimeter indicates + $5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.	Yes: step 129
			No: step 135
129	Connect multimeter between 1A4A6XA1J1-M and ground.	Multimeter indicates + $5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.	Yes: step 130
			No: step 131
130	Connect multimeter between 1A4A6-L and ground.	Multimeter indicates less than 1 VDC.	Yes: step 296
			No: step 136
131	Connect multimeter between 1A4A6-E16 and ground.	Multimeter indicates 1 VDC or more.	Yes: step 132
			No: step 297
132	Connect multimeter between 1A1P1-18 and ground.	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	Yes: step 133
			No: step 134

STEP	ACTION	INDICATION	NEXT STEP
133	Check switch 1A1S13A front.	Switch checks good.	Yes: step 285
			No: replace switch 1A1S13
134	Check relay 1A8K1.	Relay checks good.	Yes: step 285
			No replace relay 1A8K1.
135	Check components 1A6A1F3 and 1A6Q103.	Components check good.	Yes: step 286
			No: replace faulty component
136	Connect multimeter between 1A4A6-E2 and ground.	Multimeter indicates $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC}$.	Yes: step 297
			No: step 285
137	Connect multimeter between 1A4XA4J4-15 and ground.	Multimeter indicates + 2.0 VDC $\pm 0.5 \mathrm{VDC}$.	Yes: step 297
			No: step 140
138	Connect multimeter between TCXO 1A8U1-2 and ground.	Multimeter indicates + $12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.	$\begin{gathered} \text { Yes: replace TCXO } \\ \text { 1A8U1. } \end{gathered}$
			No: step 142
139	Connect oscilloscope to 1A4A6-E5 ground lead to ground.	Oscilloscope displays waveform similar to Fig. 4-2F,	Yes: step 297
		0.3 V to .09 V peak-to-peak. Frequency counter Indicates $5.0 \mathrm{MHz} \pm 5 \mathrm{~Hz}$.	No: step 285
140	Set FREQUENCY A controls to 00.0000 MHz . Connect oscilloscope probe to 1A4XA4J4-V ground lead to ground.	Oscilloscope displays waveform similar to Fid. 4-2G.	Yes: step 141
			No: step 158
141	Connect oscilloscope to 1A4XA4J4-B, ground lead to ground.	Oscilloscope displays waveform similar to Fig. 4-2H.	Yes: step 302
			No: step 143
142	Check the following components, 1A8C1, 1A8C2, and 1A8L1.	Components check good.	Yes: step 285
			No: replace faulty component
143	Connect oscilloscope to 1A4XA3J3-15, ground lead to ground.	Oscilloscope displays waveform similar to Fig. 4-2H.	Yes: step297
			No: step 144
144	Connect VTVM (AC) to 1A4XA3J3-D, ground lead to ground.	VTVM indicates 0.085 V minimum	Yes: step 145
			No: step 148
145	Connect frequency counter to oscilloscope vertical output jack.	Oscilloscope displays waveform similar to Fig. 4-2 J,	Yes: step 146
	Connect oscilloscope probe to 1A4XA3J3-P. Ground lead to ground.	0.3 V minimum amplitude. Frequency counter indicates $20 \mathrm{MHz} \pm 20 \mathrm{~Hz}$. See Fig. 4-6below.	No: step 149
146	Remove Translator CCA 1A4A3. Connect frequency counter to 1A4XA3J3-B, ground lead to ground.	Frequency counter indicates between 1.5000 MHz and	Yes: step 147
		$1.59999 \mathrm{MHz} \text {. }$	No: step 150
147	Reinstall Translator CCA 1A4A3 Connect frequency counter to 1A4XA3J3-U, ground lead to ground.	Frequency counter indicates between 111.0000 MHz	Yes: step 299
		and 122.0000 MHz .	No: step 151
148	Connect VTVM (AC) to 1A4XA1J1-4, ground lead to ground.	VTVM indicates 0.085 V minimum	Yes: step 297
			No: step 296
149	Connect oscilloscope probe to 1A4XA1J1-1 ground lead to ground.	Oscilloscope displays waveform similar to Fiq. 4-2 J,	Yes: step 297
		0.3 V minimum amplitude. Frequency counter indicates $20 \mathrm{MHz} \pm 20 \mathrm{~Hz}$.	No: step 296
150	Connect frequency counter to 1A4XA2J2-1, ground lead to ground.	Frequency counter indicates between 1.5000 MHz and	Yes: step 297
		$1.5999 \mathrm{MHz} \text {. }$	No: step 152
151	Connect frequency counter to 1A4XA5J5-2, ground lead to ground.	Frequency counter indicates between 111.0000 MHz	Yes: step 297
		and 122.0000 MHz .	No: step 300
152	Connect VTVM (AC) to 1A4XA2J2-C, ground lead to ground.	VTVM indicates 0.09 V peak-to-peak minimum.	Yes: step 153
			No: step 155
153	Connect frequency counter to oscilloscope vertical output jack. Connect oscilloscope probe to 1A4XA2J218, ground lead to ground.	Oscilloscope displays waveform similar to Fig. 4-2k.	Yes: step 154
		Frequency counter indicates $1 \mathrm{KHz} \pm 1 \mathrm{~Hz}$.	No: step 156
154	Connect multimeter between 1A4XA2J2-U and ground.	Multimeter indicates + 7.7 VDC $\pm 0.8 \mathrm{VDC}$.	Yes: step 301
			No: step 157
155	Connect VTVM (AC) to 1A4XA1J1-6, ground lead to ground.	VTVM indicates 009 V peak-to-peak	Yes: step 156
			No: step 296
156	Connect oscilloscope probe to 1A4XA1J1-18, ground lead to ground.	Oscilloscope displays waveform similar to Fi¢. 4-2G.	Yes: step 297
		Multimeter indicates + 7.7 VDC $\pm 0.8 \mathrm{VDC}$.	No: step 296
157	Connect multimeter between 1A1S15, front, pin 5 and ground.		No: step 160
158	Connect multimeter between 1A4A6-1 and ground.	Multimeter indicates + 7.7 VDC $\pm 0.8 \mathrm{VDC}$.	Yes: step 297
			No: step 285

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

STEP

ACTION

Connect oscilloscope probe to 1A4XA1J1-17, ground lead to ground.
Connect multimeter between 1A1S4B, rear, pin 7 and ground.
Set mode switch to OFF. Continuity check 1AIS15, front, pin 2 to pin 5.

Check the following components 1A1R12, 1A1R13, 1A1R14, 1A1R15, 1A1R16, 1A1R17, 1A1R18, 1A1R19, 1A1R20, 1A1R22, and 1A1S4B, rear.
Continuity check 1A1J1-B to 1A3A5-H.
Continuity check 1A3XA3J3-3 to 1A3XA 5J5-H.
Check resistance between 1A3A5-D and junction of 1A1C1 and 1A1TB1.
Check components 1AIC1, 1A1C2, and 1A1C3.

Check 1A1J1.
Continuity check 1A3A5-D to 1A3XA3J3-18
Connect multimeter between 1A3XA3J3-17 and ground.
Connect frequency counter to 1A3XA2J2-1.
Continuity check 1A3XA5J5-D to 1AIS13B, front, pin 8.
Check resistance between 1A1S13B, front, pin 8, and junction, 1A1C1 and TB1.
Connect multimeter between 1A3A5-E15 and ground.
Connect frequency counter to 1A3XA3J3-1.
Check switch 1A1S13A, front.

Continuity check 1A3XA5-S to 1A3XA3-9.
Connect multimeter between 1A3A5-E11 and ground.
Connect multimeter between 1A3A5XA2J2-6 and ground.
Connect multimeter between 1A3A5XA3J3-5 and ground.
Connect frequency counter to 1A3A5XA2J2-1, ground lead to ground.

Check relay 1A8K1 and switch 1A1S13A front.

Continuity check 1A1S13B, front, pin 8 to pin 10.

Check resistor 1A1R51.

Connect multimeter between 1A8P2-10 and ground.
Check wattmeter indication for frequency switch positions at which the frequency counter and readout did not agree.

INDICATION	NEXT STEP
Oscilloscope displays waveform similar to Fid. 4-2G.	Yes: step 297
	No: step 296
Multimeter indicates + 7.7 VDC $\pm 0.8 \mathrm{VDC}$.	Yes: step 161
	No: step 162
Continuity checks good.	Yes: step 285
	No: replace switch 1A1S15
Components check good.	Yes: step 285
	No: replace faulty component.
Continuity checks good.	Yes: step 164
	No: step 285
Continuity checks good.	Yes: step 294
	No: step 297
Multimeter indicates 5000 ohms or less	Yes: step 166
	No: step 171
Components check good.	Yes: step 167
	No: replace faulty component.
1A1J1 checks good.	Yes: step 168
	No: replace 1A1J1
Continuity checks good.	Yes: step 169
	No: step 287
Multimeter indicates less than + 1.6 VDC.	Yes: step 170
	No: step 173
Frequency counter indicates 10.5 MHz.	Yes: step 295
	No: step 174
Continuity checks good.	Yes: step 183
	No: step 182
Multimeter indicates 5000 ohms or less	Yes: step 285
	No: step 183
Multimeter indicates less than + 1.6 VDC.	Yes: step 287
	No: step 184
Frequency counter indicates 10.5 MHz .	Yes: step 287
	No: step 294
Switch checks good.	Yes: step 176
	No: replace switch
	1A1S13
Continuity checks good.	Yes: step 285
	No: step 287
Multimeter indicates +12 VDC ± 08 VDC	Yes: step 178
	No: step 181
Multimeter indicates + $12 \mathrm{VDC} \pm 08 \mathrm{VDC}$	Yes: step 179
	No: step 287
Multimeter indicates + $12 \mathrm{VDC} \pm 08 \mathrm{VDC}$	Yes: step 180
	No: step 287
Frequency counter indicates 10.5 MHz.	Yes: step 295
	No: step 294
Components check good.	Yes: step 285
	No: replace faulty component.
Continuity checks good.	Yes: step 285
	No: replace switch 1A1S13.
Component checks good.	Yes: step 285
	No: replace resistor 1A1R51
Multimeter indicates less than + 16 VDC	Yes: step 285
	No: step 292
Wattmeter indicates $100 \mathrm{~W} \pm 10 \mathrm{~W}$	Yes: step 186
	No: step 189

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

STEP
186

ACTION
Set mode switch to OFF. Using a multimeter between ground and pin indicated, perform frequency switch checks as shown below.

NOTE

$1=500$ ohms or more
$0=0 \mathrm{ohms}$

INDICATION
Switches check good.

Frequency Switch Coding

Frequency Switch Coding				
10 MHz Switch Setting			1A1P3	
(A or B)	Pin 2		Pin 3	Pin B
0	0		1	1
1	1		0	1
2	1		1	0
1 MHz Switch Setting			1A1P3	
(A or B)	Pin 4	Pin D	Pin H	Pin 7
0	1	0	0	1
1	1	0	0	0
2	0	1	1	1
3	0	1	1	0
4	0	1	0	1
5	0	1	0	0
6	0	0	1	1
7	0	0	1	0
8	0	0	0	1
9	0	0	0	0
100 KHz Switch Setting			1A1P3	
(A or B)	Pin 5	Pin E	Pin F	Pin 6
0	0	0	0	0
1	1	0	0	1
2	1	0	0	0
3	0	1	1	1
4	0	1	1	0
5	0	1	0	1
6	0	1	0	0
7	0	0	1	1
8	0	0	1	0
9	0	0	0	1
10 KHz Switch Setting			1A1P3	
(A or B)	Pin R	Pin K	Pin 9	Pin 14
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
1 KHz Switch Setting			1A1P3	
(A or B)	Pin P	Pin L	Pin 10	Pin 13
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
100 Hz Switch Setting			1A1P3	
(A or B)	Pin N	Pin M	Pin 11	Pin 12
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

Frequency Switch Checks (Continued)
3
4
5
6
7
8
9

Set mode switch to LSB. Using multimeter between ground and pin indicated, perform display checks as shown below.

NOTE

$0=0.8 \mathrm{~V}$ or less
$1=2-5 \mathrm{~V}$

Display		
Readout		
Indication	Pin 1	Pin 7
00.0000	0	0
11.1111	1	0
22.2222	0	0

Display Checks

	1A1A2J1		
Pin 5	Pin 6	Pin 3	Pin 4
0	0	0	1
0	1	1	1
1	0	1	0

	Pins	Pins	Pins	1A1A2J1 Pins	Pins	Pins	Pins
Display	10, 18,	14, 20,	12, 21,	13, 22,	8, 15,	9, 17,	11, 19
Readout	27, 34,	29, 36,	25, 32,	28, 35,	23, 31,	26, 33,	24, 30
Indication	39	43	41	40	37	38	42
0.0000	0	0	0	0	0	0	1
1.1111	1	0	0	1	1	1	1
2.2222	0	0	1	0	0	1	0
3.3333	0	0	0	0	1	1	0
4.4444	1	0	0	1	1	0	0
5.5555	0	1	0	0	1	0	0
6.6666	1	1	0	0	0	0	0
7.7777	0	0	0	1	1	1	1
8.8888	0	0	0	0	0	0	0
9.9999	0	0	0	1	1	0	0

Set mode switch to OFF. Using a multimeter between ground and pin indicated, perform frequency switch checks as shown below.

NOTE

$0=500$ ohms or more
$0=0$ ohms

Yes: step 288
No: step 188

Yes: step 289
No: step 285

Frequency Switch Checks

10 MHz Switch Setting	Pin 18		1A1J5 (A or B)		
0	0		1		Pin 19

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

ACTION	INDICATION			
	Frequency Switch Checks (Continued)			
6	0	0	1	1
7	0	0	1	0
8	0	0	0	1
9	0	0	0	0
100 MHz Switch Setting				
(A or B)	Pin 25	Pin 26	Pin 27	Pin 24
0	0	0	0	0
1	1	0	0	1
2	1	0	0	0
3	0	1	1	1
4	0	1	1	0
5	0	1	0	1
6	0	1	0	0
7	0	0	1	1
8	0	0	1	0
9	0	0	0	1
10 KHz Switch Setting				
(A or B)	Pin 13	Pin 14	Pin 15	Pin 12
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
6	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
1 KHz Switch Setting				
(A or B)	Pin 9	Pin 11	Pin 10	Pin 8
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
100 Hz Switch Setting				
(A or B)	Pin 5	Pin 6	Pin 7	Pin3
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Disconnect 1A8P2 from 1A5J1. Continuity check the following.
1A8P2-1 to 1A1S2-A front 10, 1
1A8P2-2 to 1A1S2-A front 2
1ASP2-3 to 1A1S2-A front 3
1A8P2-4 to 1A1S2-A front 4, 5
1A8P2-6 to 1A1S2-A front 6, 7, 8
1A8P2-6 to 1A1S2-B front 1, 2, 10
1A8P2-7 to 1A1S2-B front 3, 4, 5, 6, 7, 8, 9
1A8P2-8 to 1A1S1-B rear 2

Yes: step 290
No: step 285

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

STEP

Check switches 1A1S7, 1A1S8, 1A1S1 and 1A1S2.
Check FREQ CONTROL switch 1A1S15.

Set mode switch to LSB. Check frequency switch and associated diode related to faulty indication in step 167. (Refer to FO-10].
Remove Translation CCA 1A4A3. Connect frequency counter to 1A4XA2J2-1. Perform freqeuncy checks as shown below.
Switches check good.

INDICATION

Switch checks good.

Components check good.

Frequency checks are correct.

NEXT STEP
Yes: step 292
No: replace faulty switch
Yes: step 192
No: replace switch
1A1S15
Yes: step 193
No: step 274
Yes: step 194
No: step 201

Frequency Checks Frequency Switch Settings			
10 KHz	1 KHz	100 Hz	Frequency
0	0	1	1.5001 MHz
0	0	2	1.5002 MHz
0	0	3	1.5003 MHz
0	0	4	1.5004 MHz
0	0	5	1.5005 MHz
0	0	6	1.5006 MHz
0	0	7	1.5007MHz
0	0	8	1.5008 MHz
0	0	9	1.5009 MHz
Frequency Switch Settings			
10 KHz	1 KHz	100 Hz	Frequency
0	1	0	1.5010 MHz
0	2	0	1.5020 MHz
0	3	0	1.5030 MHz
0	4	0	1.5040 MHz
0	5	0	1.5050 MHz
0	6	0	1.5060 MHz
0	7	0	1.5070 MHz
0	8	0	1.5080 MHz
0	9	0	1.5090 MHz
Frequency Switch Settings			
10 KHz	1 KHz	100 Hz	Frequency
1	0	0	1.5100 MHz
2	0	0	1.5200 MHz
3	0	0	1.5300 MHz
4	0	0	1.5400 MHz
5	0	0	1.5500 MHz
6	0	0	1.5600 MHz
7	0	0	1.5700 MHz
8	0	0	1.5800 MHz
9	0	0	1.5900 MHz

Connect signal generator to 1A4A6-E17 using 50 ohm coaxial cable. Connect multimeter between 1A4A4-TP1 and ground. Set signal generator frequency to 9.9 MHz , output level to 0.1 V , RMS. Set $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 KHz switches to 0 .
Slowly increase signal generator frequency.
Using a multimeter between ground and pin indicated, and by varying the frequency above and below the indicated transition frequency, perform frequency switch checks as shown below.

Multimeter indicates more than + 4.5 VDC.

At 10.0 MHz , multimeter indication changes to less than + 0.9 VDC.
In each case, multimeter indicates greater than +4.5 VDC with signal generator below the transition frequency, and less than + 0.9 VDC with signal generator above the transition frequency.

Yes: step 195
No: step 199

Yes: step 196
No: step 299
Yes: step 197
No: step 202

Frequency Checks
Frequency Switch Settings
10 MHz 1 MHz

100 KHz
1
2
Transition
Frequency (± 1
KHz)
10.1 MHz
10.2 MHz

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

NEXT STEP

	Frequency Checks Frequency Switch Settings 1 MHz		INDICATION

Using a multimeter between ground and pin indicated, and by varying the frequency above and below the indicated transition frequency, perform frequency switch checks as shown below.

In each case, multimeter indicates greater than +4.5 Yes: step 198 VDC with signal generator below the transition No: step 203 frequency, and less than +0.9 VDC with signal generator above the transition frequency.

Transition
Frequency (± 1
KHz)
10.3 MHz
10.4 MHz
10.6 MHz
10.7 MHz
10.8 MHz
10.9 MHz

MHz
13.0 MHz
14.0 MHz

0 MHz
17.0 MHz
18.0 MHz
19.0 MHz

Connect multimeter between 1A4XA2J2-U and ground. Check Voltages check good. low digit coarse steering voltages as shown below.

	Transition
100 KHz	Frequency $(\pm 1 \mathrm{KHz})$
0	20.0 MHz
0	30.0 MHz
9	39.9 MHz

Continuity check 1A4XA4-B to 1A4XA3-15.
Continuity checks good.
Connect multimeter between 1A4XA2J2-U and ground. Check Voltages check good. low digit coarse steering voltages as shown below.

Yes: step 199
No: step 200

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

 STEP1A4A6J1-P to 11A4XA2J2-N
1A4A6J1-14 to 11A4XA2J2-S
1A4A6J1-9 to 1A4XA2J2-14
1A4A6J1-K to 1A4XA2J2-15
1A4A6J1-R to 1A4XA2J2-R

Continuity check the following:
Continuity checks good.
1A4A6J1-D to 1A4XA4-8
1A4A6J1-H to 1A4XA4-H
1A4A6J1-7 to 11A4XA4-J
1A4A6J1-5 to 11A4XA4-4
1A4A6J1-E to 1A4XA4-5
1A4A6J1-F to 1A4XA4-D
1A4A6J1-6 to 1A4XA4-E
Connect multimeter between 1A4XA5J5-15 and ground. Check Voltages check good. coarse steering voltages as shown below.

Coarse Steering		
1 MHz	1A4XA6J5 Pin 15	
Switch Setting	Volts	
0	1.37	
1	1.78	
2	2.18	
3	2.75	
4	3.31	
4	4.12	
6	4.93	
6	6.15	
7	7.85	
8	9.56	

Continuity check the following:
1A4XA4-12 to 1A4XA5-7
1A4XA4-13 to 1A4XA5-6
Continuity check 1A4A6-1 to 1A4XA2-U
Continuity check 1A4XA5-15 to 1A4XA6-C.
Check switch 1A1S2D rear switch 1A1S15 and 1A1R1 thru R11.

Using multimeter, perform 10 MHz switch/VHF Divider preset checks as shown below.

Continuity checks good.

Continuity checks good.
Continuity checks good.
Components check good.
$10 \mathrm{MHz} / \mathrm{VHF}$ Divider preset checks are good.
10 MHz
Switch Setting
0
1
2
1A4XA4-12
\quad Volts
0.8 or less
$2.0-5.0$
0.8 or less

> 1A4XA4-13
> Volts
> $2.0-5.0$
> 0.8 or less
> 0.8 or less

Continuity check
1A4XA4J4-12 to 1A4XA5J5-7
1A4XA4J4-3 to 11A4XA5J5-6 1A4A6J1-2 to 11A4XA5J5-18 1A46J1-3 to 1A4XA5J5-17 1A46J1-13 to 1A4XA5J5-16
Continuity check
1A4A6J1-2 to 1A1S1A-10, front 1A4A6J1-3 to 1A1S1A-1, front 1A4A6J1-B to 1A1S1A-2, front Check frequency switch and associated diode related to faulty Components check good. indication in step 6b.

Continuity checks good.

Continuity checks good.

Yes: step 302
No: step 297

Yes: step 206
No: step 208

Yes: step 300
No: step 297
Yes: step 285
No: step 297
Yes: step 207
No: step 297
Yes: step 285
No: replace faulty compo-
nent
Yes: step 209
No: step 300

Yes: step 211
No: step 297

Yes: step 301
No: step 285

Yes: step 212
No: replace faulty component.

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

STEP

ACTION
Check switch 1A1S8-D, rear, and 1A1R23 thru R33.
Check switch 1A1S10-13, rear, and 1A1R34 thru R44.
Check switch 1A1S15.
Connect multimeter across 1A1DS2 contacts.
Set mode switch to OFF. Remove front panel. Check
continuity between 1A1R52, pins A and B.
Connect multimeter between synthesizer mother board 1A4A6-J
and ground. Rotate VFO control.
Connect multimeter between Translator CCA, 1A4XA3-A and
ground Rotate VFO control.
Connect multimeter between 1A4A6-8 and ground.
Connect multimeter between 1A4XA3-1 and ground.
Check VFO control 1A1R52.

Adjust 1A4A3-L22 for a multimeter indication of $7.6 \mathrm{VDC} \pm 0.8$ VDC. Check relay 1A1K101 and diode 1A1CR17.

Check FREQ CONTROL switch 1A1S15.

Set signal generator to 0 dB . Connect oscilloscope probe to 1A3XA2J2-5.
Connect oscilloscope probe to 1A3XA4J4-11, ground lead to ground.
Connect multimeter between 1A3XA4J4-9 and ground.
Connect multimeter between 1A3XA4J4-13 and ground.
Connect VTVM (AC) to 1A3XA4J4-6, ground lead to ground.
Connect frequency counter to 1 A5A4-E1, ground lead to ground.
Connect frequency counter to 1A3XA1J1-15, ground lead to ground.
Connect oscilloscope probe to 1A3XA2J2-11, ground lead to ground.
Connect multimeter between 1A3XA1J1-3 and ground.
Connect frequency counter to 1A3A5-E22, ground lead to ground.
Connect multimeter between 1A3XA1J1-P and ground.
Connect multimeter between 1A3XA2J2-9 and ground.
Connect multimeter between 1A3XA2J2-3 and ground.
Connect multimeter between 1A3XA2-P and ground.
Connect multimeter between 1A3A5-E1 and ground.
Connect multimeter between mode switch, 1A1S13-2 and ground.
Components check good.
Components check good.
Switch checks good.
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$
Continuity checks good.
Multimeter indicates $+7.6 \mathrm{VDC} \pm 0.8 \mathrm{~V}$.
Multimeter indicates $+7.6 \mathrm{VDC} \pm 0.8 \mathrm{~V}$.
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Component checks good.

L22 adjusts within tolerance.
Components check good.

Component checks good.

Oscilloscope displays waveform similar t $\boxed{\text { Fig. 4-21. }}$
Oscilloscope displays waveform similar to Fig. 4-2M.
Multimeter indicates +12 VDC ± 0.8 VDC .
Multimeter indicates between +2.0 VDC and +8.0 VDC.
VTVM indicates 0.1 V minimum.
Frequency counter indicates 29.9994 MHz .
Frequency counter indicates 29.9994 MHz .
Oscilloscope displays waveform similar to Fig. 4-2M.
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Frequency counter indicates 29.9994 MHz .
Multimeter indicates between +2.0 VDC and +8.0
VDC.
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.
Multimeter indicates between + 2.0 VDC + 0.8 VDC.
Multimeter indicates +12 VDC ± 0.8 VDC.
Meter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.

NEXT STEP
Yes: step 213
No: replace faulty component.
Yes: step 214
No: replace faulty component.
Yes: step 285
No: replace switch 1A1S15
Yes: replace 1A1DS2
No: step 216
Yes: step 285
No: replace VFO control 1A1R52.
Yes: step 217
No: step 221
Yes: step 219
No: step 221
Yes: step 220
No: step 285
Yes: step 222
No: step 297
Yes: step 285
No: replace VFO control 1A1R52.
Yes: step 6d
No: step 299
Yes: step 224
No: replace faulty component.
Yes: step 285
No: replace switch 1A1S15
Yes: step 226
No: step 230
Yes: step 227
No: step 232
Yes: step 228
No: step 287
Yes: step 229
No: step 290
Yes: step 290
No: step 187
Yes: step 231
No: step 292
Yes: step 233
No: step 234
Yes: step 287
No: step 236
Yes: step 235
No: step 239
Yes: step 287
No: step 285
Yes: step 298
No: step 287
Yes: step 237
No: step 287
Yes: step 238
No: step 287
Yes: step 295
No: step 287
Yes: step 287
No: step 241
Yes: step 285
No: replace 1A1S13.

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

STEP

Check relay 1A8K1.
Connect multimeter between 1A3A5-E5 and ground.
Set signal generator to 0 dB and 100% modulation. Connect oscilloscope probe to 1A4XA113, ground lead to ground.
Connect multimeter between 1A4A6-E16 and Multimeter indicates +12 VDC ± 0.8 VDC. ground. Connect multimeter between 1A4XA1-L and ground.

Check relay 1 A 8 K 1 .
Connect oscilloscope probe to 1A3XA2-11, ground lead to ground.
Connect multimeter between 1A3XA4-7 and ground. Connect multimeter between 1A3XA2-7 and ground.

Connect multimeter to Speaker Driver CCA
1A1A1-E1.
Connect multimeter between 1A6A1-8 and ground.
Connect multimeter between 1A6A1-9 and ground.

Check 1A6Q101 and 1A6R2.

Connect multimeter between junction of 1A6CR1 and 1A6CR3 and the junction of 1A6CR2 and 1A6CR4.
Check fuse 1A6F1.
Check component 1A6Q101.

Connect multimeter between 1A6XA1-J and ground.
Remove Regulator Board 1A6A1. Connect multimeter on 1A6A1 between 1A6A1-E and 1A6A1-R.
Remove Regulator Board 1A6A Connect multimeter between 1A6XA1-J and ground. Check component 1A6Q104.

Check diodes 1A6CR1, 1A6CR2, 1A6CR3, Diodes check good. 1A6CR4.

Check components 1A6R1, 1A6C5, and 1A6C6.

Check transistor 1A6Q101 and resistor 1A6R2.

Set mode switch to OFF. Remove ANTENNA COUPLER CONTROL (para. 3-12). Check components 1A2R1, 1A2R2 and 1A2R3.

Relay checks good.
Multimeter indicates + 12 VDC ± 0.8 VDC.
Oscilloscope displays waveform similar to Fiq. 4-2_.

Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.

Relay checks good.
Oscilloscope displays waveform similar to Fig. 4-2 N .
Multimeter indicates +12 VDC ± 0.8 VDC .
Multimeter indicates $+12 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$.

Multimeter indicates +28 VDC $\pm 1.5 \mathrm{VDC}$.
Multimeter indicates $+40 \mathrm{VDC} \pm 1.5 \mathrm{VDC}$.

NOTE

If no, set mode switch to OFF. Walt approximately 15 seconds then set mode switch to LSB and repeat step. If still no, go to step 263.
Multimeter indicates $+28 \mathrm{VDC} \pm 1.5 \mathrm{VDC}$.
Components check good.

Multimeter indicates 46 VAC or more

Fuse checks good.
Component checks good.

Multimeter indicates between 450 ohms and 650 ohms.
Multimeter indicates 850 ohms or more.

Meter indicates between 450 ohms and 850 ohms.
Component checks good.

Components check good.

1A6Q101 and 1A6R2 check good.

Components check good.

Yes: step 285
No: replace relay 1 A 8 K 1 .
Yes: step 243
No: step 246
Yes: step 244
No: step 247
Yes: step 245
No: step 285
Yes: step 296
No: step 297

Yes: step 285
No: replace relay 1A8K1
Yes: step 248
No: step 249
Yes: step 290
No: step 287
Yes: step 295
No: step 287

Yes: step 291
No: step 251
Yes: step 252
No: step 253

Yes: step 255
No: step 263
Yes: step 285
No: replace faulty component.
Yes: step 255
No: Replace transformer 1A6T1.
Yes: step 261
No: step 256
Yes: step 257
No: replace transistor 1A6Q101; and replace fuse 1A6F1.
Yes: step 258
No: step 259
Yes: replace fuse 1A6F1
No: replace fuse 1A6F1 and go to step 286
Yes: replace fuse 1A6F1
No: step 260
Yes: replace fuse 1A6F1 and go to step 285.
No: replace 1A6Q104; and replace fuse 1A6F1.
Yes: step 262
No: replace faulty component.
Yes: step 285
No: replace faulty component.
Yes: step 286
No: replace faulty component.
Yes: step 285
No: replace faulty component.

4-19

STEP
265

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued

ACTION
Connect multimeter across contacts of 1A2DS2.

Connect multimeter across contacts of 1A2DS1.

Check switch 1A2S2.

Connect multimeter across 1A2DS3.

Set mode switch to OFF. Check REFL FWD POWER MONITOR switch 1A2S1.

Check relay 1 A 8 K 1 .

Set mode switch to OFF. Check REFL FWD POWER MONITOR switch 1A2S1.

Check resistor 1A1R49.

Continuity check 1A8P2-17 to 1A2S1 center contact.
Connect multimeter between 1A6A2-E6 and ground.
Set mode switch to OFF. Check 1A6T1 primary windings;
1A6TB2-7 to 1A6TB2-6
1A6TB2-7 to 1A6TB2-5
1A6TB2-7 to 1A6TB2-4
1A6TB2-7 to 1A6TB2-2
1A6TB2-7 to 1A6TB2-1
Continuity check the following
1A6TB2-7 to 1A6A2-E2
1A6TB2-6to 1A6A2-E1
1A6TB2-4 to 1A6A2-E5
1A6TB2-2 to 1A6A2-E8
1A6TB2-2 to 1A6A2-E3
1A6TB2-1 to 1A6A2-E4
Connect multimeter between 1A8J5-11 and ground.
Check DC fuse 1A8F3.

Check relay 1A8K2 for proper DC operation.

Check components 1A8Q1, 1A8CR2, 1A8CR3, 1A3CR4, 1A8CR5, IA8R1, 1A8R2.

Check switch 1A1S13-C front.

Repair and/or replace wiring and connectors as necessary.
Replace and/or repair Regulator Assy 1A6A1. Use conventional troubleshooting methods for repair. (If 1A6F1 is blown--check 1A6Q104).
Replace and/or repair Receiver/Exciter Mother Board 1A3A5. Use conventional troubleshooting methods for repair. (If no modulation when mic is
INDICATION
Multimeter indicates + 12 VDC ± 0.8 VDC.
COUPLER STATUS FAULT indicator went out.
COUPLER STATUS TUNING indicator illuminated.
COUPLER STATUS TUNING indicator went out.
Multimeter indicates +12 VDC ± 0.8 VDC.

EXT STEP
Yes:replace 1A2DS2 and
go to step 13.
No: step 285
Yes: step 267
No: step 270
Yes: step 268
No: step 271
Yes: step 269
No: step 285
Yes:
replace
1A2DS1 and

$$
\text { go to step } 13
$$

No: step 285
Yes: step 285
No: replace switch
1A2S2
Yes: step 285
No: replace 1A2DS1
and
go to step 13.
Yes: step 273
No: replace switch
1A2S1.
Yes: step 285
No: replace relay 1A8K1.
REFL FWD POWER MONITOR switch 1A2S1 Yes: step 276 checks good.

Resistor checks good.

Continuity checks good.
Multimeter indicates + 13 VDC.
1A1T1 primary windings check good.

Continuity checks good.
No: replace switch
1A2S1.
Yes: step 285
No: replace resistor
1A1R49.
Yes: step 292
No: step 285
Yes: step 278
No: step 280
Yes: step 279
No: replace
transformer
1A6T1.

Yes: step 303
No: step 285

Multimeter indicates + 13 VDC .	Yes: step 285
	No: step 281
Fuse checks good.	Yes: step 282
	No: replace fuse 1A8F3.
Relay checks good.	Yes: step 283
	No: replace relay
	1A8K2.
Components check good.	Yes: step 284
	No: replace faulty
	compo-
Switch checks good.	Yes: step 284
	No: replace switch
	1A1S13.

No: step 281
Yes: step 282
replace fuse

No: replace relay 1A8K2.
Yes: step 284
No: replace faulty compo-
nent.
Yes: step 284
No: replace switch 1A1S13.

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued
keyed--check 1A3A5Q1 and associated circuitry)

Replace and/or repair Display CCA 1A1A3. Use conventional troubleshooting methods for CCA repair. (If one or more segments are incorrect--check 1A1A2J1 for proper connection.) Replace and/or repair Decoder CCA 1A1A2. Use conventional troubleshooting methods for CCA repair.
Replace and/or repair Audio CCA 1A3A4. Use conventional troubleshooting methods for CCA repair.
Replace and/or repair Speaker Driver CCA 1A1A1. Use conventional troubleshooting methods for CCA repair.
Replace and/or repair Filter Module Assy. 1A5. Use conventional troubleshooting methods for repair.
Replace and/or repair RF Power Amplifier Assy. 1A7A1. Use conventional troubleshooting methods for repair.
Replace and/or repair Sideband Generator CCA 1A3A3. Perform ALC, ACC, Carrier Null, and Balanced Modulator adjustments. Use conventional troubleshooting methods for repair. (If no CW sidetone--check 1A3A2C28 and 1A3A3C31.) Replace and/or repair IF Filter CCA 1A3A2. Perform 2nd IF adjustment. Use conventional troubleshooting methods for CCA repair. (If low transmit audio and low receive sensitivitycheck diodes 1A3A2CR1 thru 1A3A2CR16).
Replace and/or repair Spectrum Generator CCA 1A4A1. Perform $17 \mathrm{MHz}, 20 \mathrm{MHz}$, and 21 MHz adjustments. Use conventional troubleshooting methods for CCA repair. (If tone or beat note Is heard in AM receive--check 1A4A1Q3.)
Replace and/or repair Synthesizer Mother Board 1A4A6. Use conventional troubleshooting methods for repair. (If 3rd local oscillator blanks only every other time--check 1A4A6Q2.)
Replace and/or repair VHF Mixer CCA 1A3A1. Perform 1st IF and IF Gain adjustments. Use conventional troubleshooting methods for CCA repair. (If loss of receive or receive sensitivity--check 1A3A1Q2 and associated circuitry.)
Replace and/or repair Translator CCA 1A4A3. Perform VFO, $21 \mathrm{MHz}, 19.45 \mathrm{MHz}, 81.25 \mathrm{MHz}, 100.75 \mathrm{MHz}$ Bandpass Filter, 2nd L.O., and Output Level adjustments. Use conventional troubleshooting methods for CCA repair. (If no transmit or receive--check oscillator circuit, 1A4A3Q7 and associated components.)
Replace and/or repair VHF VCO CCA 1A4A5. Perform Band 0, Band 1, Band 2, and 1st L.O. adjustments. Use conventional troubleshooting methods for CCA repair. (If off frequencycheck 1A4A5Q1 and 1A4A5Q2.)
Replace and/or repair Low Digit Generator CCA 1A4A2. Perform VCO adjustment. Use conventional troubleshooting methods for CCA repair. (1 If incorrect frequency--check 1A4A2CR14 and 1A4A2U5; 2. If 1A4A2U3 has a high output-check that all are switching between low and high, if one input is not switching then

Table 4-2. Checkout/Troubleshoot the Receiver-Transmitter RT-1277/URC-92--Continued ACTION

NEXT STEP
1A4A2U3 is not at fault; 3. If TP3 is below 1.5 V , TP2 should be below 15 MHz and vice versa. When yes, check divider circuit; when on, check oscillator circuit.
Replace and/or repair VHF Divider CCA 1A4A4. Use conventional troubleshooting methods for CCA repair. (If off frequency by approximately 1 MHz but good when 100 KHz control is on zero--check 1A4A4U4.)
Replace and/or repair DC Inverter Assy. 1A6A2. Use conventional troubleshooting methods for repair. (If blowing transistors and/or inverter doesn't work--check 1A6A2K1.)

4-6. Antenna Coupler CU-2229/URC-92 Checkout/Troubleshoot

The following procedure in Table 4-3 will establish the operational readiness of CU-2229/URC-92 antenna coupler. Successful completion of the checkout portion indicates the antenna coupler is operationally ready for use. Troubleshooting procedures are designed to function from incorrect indications in the checkout.

Following any repair action, the test technician must return to step 1 of the checkout unless instructed
differently by the procedure. The troubleshooting does not consider incorrect or missing supply voltages to subassemblies. Before any replace/repair action is accomplished on a subassembly, the test technician should verify all necessary supply voltages at the subassembly. Incorrect or missing supply voltages should be repaired using conventional troubleshooting methods. Refer to List of Illustrations for the appropriate schematics.

Table 4-3. Checkout/Troubleshoot the Antenna Coupler CU-2229/URC-92

ACTION
Remove case from Antenna Coupler CU-2229/ URC-92. Connect RF and control cables between the Antenna Coupler to be checked and a known good RT-1277/URC-92 ReceiverTransmitter. Insure the receiver-transmitter is correctly powered and grounded.
Set mode switch to AM.
Disconnect RF cable at the receiver-transmitter. Connect a 50 ohm dummy load to the receiver transmitter.

NOTE

A means of timing, in seconds, is required for this step.
Set mode switch to CPLR TUNE KW. Depress TUNE START. Begin timing and observe COUPLER STATUS indicators.

Disconnect dummy load from receiver-transmitter. Reconnect rf cable from Antenna Coupler. Connect 50 ohm dummy load to the Antenna Coupler antenna post. Connect ground post to ground. Set frequency to 1.602 MHz . Depress TUNE START. Set mode selector to CW.

Set mode switch to CPLR TUNE KW. Depress TUNE START.

INDICATION

COUPLER STATUS FAULT indicator illuminates.

NEXT STEP Step 2a

Yes: step 2b No: step 8

COUPLER STATUS FAULT indicator goes out. COUPLER STATUS TUNING indicator is illuminated and transmitter keys on. After 35 to 45 seconds, transmitter unkeys and COUPLER STATUS TUNING indicator goes out. COUPLER STATUS FAULT indicator illuminates.
COUPLET STATUS TUNING indicator illuminates, Yes: step 3b transmitter keys and both drive motors, 2M1 and 2M2, No: step 50 dive.

COUPLER STATUS FAULT indicator is illuminated, Yes: step 4a transmitter unkeys and drive motors stop driving. No: step 90

NOTE

If the time delay runs out during this test, depress TUNE START once more. If tuning occurs the second time the indication is good.

Table 4-3. Checkout/Troubleshoot the Antenna Coupler CU-2229/URC -92--Continued
ACTION
Set mode switch to CW then return to CPLR
TUNEKW
Set mode switch to AM Key transmitter
Set frequency to 1.802 MHz Key transmitter
Set frequency to 1.602 MHz Key transmitter

Perform the following procedure for each setting listed Set and tune to the tune frequency Reset frequency to the check frequency. Set mode switch to CW and key transmitter Check both the FWD and REFL, power.

NOTE

The frequencies below do not necessarily match the average powers listed In the indication column for this step

Tune	Check
Frequency	Frequency
1.604	1.602
2.004	2.002
4.001	4.000
8.001	8.000
12.001	12.000
16.001	16.001
20.001	20.000
24.001	24.000
29.999	29.998

Set mode switch to OFF Disconnect cabling between receiver-transmitter and antenna coupler
Reassemble Antenna Coupler Unit
Antenna Coupler Unit CU-2229/URC-92 check-
out is now complete Antenna Coupler is operationally ready
Connect multimeter between 2A3-E7 and ground
Connect multimeter between 2A3-E21 and ground
Connect multimeter between 2A3-E5 and ground
Connect multimeter between 2A3-E8 and ground
Check components 2A3AR4, 2A3AC2 and 2A3ACR3

Set mode switch to OFF Remove control Logic CCA 2A1 Continuity check 2A3-E7 to 2XA1-P and 2XA1-12 to 2A3A-E21
Check components 2A3AC20, 2A3AL5 and 2A3AC5

Connect multimeter between 2A3A-E12 and ground

INDICATION
Antenna Coupler completes tune cycle, COUP LER STATUS FAULT indicator goes out and COUPLER STATUS READY indicator illuminates
COUPLER STATUS READY indicator goes out and COUPLER STATUS FAULT indicator illuminates
COUPLER STATUS FAULT indicator goes out and COUPLER STATUS READY indicator illuminates COUPLER STATUS FAULT indicator illuminates-

COUPLER STATUS READY indicator illuminates
NOTE
The Antenna Coupler Control gain adjustment can affect both the REFL power indication and tuning Normal gain setting is about $145 \mathrm{VDC} \pm 05 \mathrm{VDC}$ but a sight adjustment may be necessary If some frequencies do not tune, adjust the gain slightly clockwise If the REFL power indlca tlon is a little high, adjust the gain slightly counterclockwlse The final gain control setting must satisfy both requirements if not, proceed to the troubleshooting reference for this step
Antenna Coupler completes each tune cycle Also the power readings should be approximate to one of the acceptable FWD/REFL ratios below

Average FWD (watts)	REFL (or less)
20	0.8
30	1.2
40	1.6
50	2.0
60	24
70	28
80	32
100	40

For location of parts se fiqures 4-22 thru 4-66
Meter indicates +5 VDC ± 025 VDC
Meter indicates 0 VDC ± 05 VDC
Meter indicates 0 VDC ± 05 VDC
Meter indicates + $10 \mathrm{VDC} \pm 08 \mathrm{VDC}$
Components check good

Continuity checks good

Components check good

Meter indicates $+28 \mathrm{VDC} \pm 15 \mathrm{VDC}$

NEXT STEP
Yes: step 4b
No: step 91
Yes step 4c
No step 140
Yes step 4d
No step 140
Yes step 4e
No step 140
Yes step5a
No step 140
Yes step 6a
No step 129

Step 6b
Step 6c

Yes step8
No step 10
Yes: step 9
No step 12
Yes step 139.
No: step 13
Yes step 11
No step 14
Yes step 139
No replace faulty
component
Yes step 140
No step 139
Yes step 139
No replace faulty
component
Yes step15
No step 16

Table 4-3. Checkout/Troubleshoot the Antenna Coupler CU-2229/URC -92--Continued

STEP

Check components 2A3AC13, 2A3AL12, 2A3AC12, 2R1, and 2CR2

Set mode switch to OFF Remove and check fuse 2F1

Connect multimeter between 2A3A-E14 and ground
Remove Phase and Amplitude CCA 2A2 Connect multimeter between 2A3A-E14 and ground Reinstall Phase and Amplitude CCA 2A2 Remove Control Logic CCA 2A1 Connect multimeter between 2A3A-E14 and ground Reinstall Control Logic CCA 2A1 Check components, 2A3AC12, 2A3AC13, 2K1, 2CR3, 2K4, 2CR1 and 2A5 for shorts and/or shorts to ground

Connect multimeter between 2A3-E6 and ground
Disconnect connector from Servo Control Assy 2A6 Connect multimeter between 2A3-E6 and ground
Reconnect connector to Servo Control Assy 2A6
Check components 2A3R1, 2A3C2, 2A3AC9,
2A3AL9 and 2A3AC16 for shorts and/or shorts to ground

Adjust 2A1R4 for approximately a 40 second delay
Set mode switch to OFF Remove Control Logic
CCA 2A1 Disconnect control cable at Antenna
Coupler Connect multimeter between 2A3AE21 and ground

Set mode switch to OFF Disconnect control cable at Antenna Coupler Remove Control Logic CCA
2A1 Continuity check 2PI-p to 2XA1-7

Set mode switch to OFF Disconnect control cable at Antenna Coupler Remove Control Logic CCA 2A1 Connect multimeter between 2A3A-E16 and ground
Check components 2A3AC5, 2A3AL5 and
2A3AC20 for shorts and/or shorts to ground

Components check good	Yes: step 139 No: replace faulty component.
Fuse checks good	Yes reinstall fuse 2F1 and go to step 139
	No step 17
Meter indicates more than 25 ohms	Yes step21
	No step 18
Meter indicates more than 25 ohms	Yes step 141
	No step 19
Meter indicates 25 ohms or more	Yes step 140
	No step 20
Components check good	Yes replace fuse 2F1 and go to step 139
	No replace fuse and replace faulty component
Meter indicates 100 ohms or more	Yes replace fuse 2F1 No step 22
Meter indicates 100 ohms or more	Yes step 142
	No step 23
Components check good	Yes step 139
	No replace faulty component
COUPLER STATUS FAULT indicator went out	Yes step 25
	No step 28
COUPLER STATUS TUNING indicator illumlnated and transmitter is keyed	Yes step26
	No. step 29
COUPLER STATUS TUNING indicator went out and transmitter unkeyed	Yes step 27
	No step 31
Delay can be adjusted for 35 to 45 seconds	Yes step2c
	No step 140
Meter indicates 1000 ohms or more	Yes step 140
	No step 33
COUPLER STATUS TUNING Indicator illuml-	Yes step 30
nated	No step 34
Continuity checks, 10 ohms or less	Yes step 140
	No step 36
COUPLER STATUS TUNING indicator went	Yes step 32
out	No step 37
Meter indicates 100 ohms or more	Yes step 140
	No step 39
Components check good	Yes reinstall Control Logic CCA
	2A1, go to step 139
	No replace faulty
	component,
	trol Logic CCA
	2A1
Transmitter keyed	Yes step 35
	No step 40

STEP	ACTION	INDICATION	NEXT STEP
35	Set mode switch to OFF Disconnect control cable at Antenna Coupler Remove Control Logic CCA 2A1 Continuity check 2P1-L to 2XA1-6	Continuity checks, 10 ohms or less	Yes step 140 No step 43
36	Check component 2A3L10	Component checks good	Yes step 139 No replace faulty component Reinstall Control Logic CCA2A1
37		Transmitter unkeyed	Yes step 38 No step 140
38	Set mode switch to OFF Disconnect control cable at Antenna Coupler Remove Control Logic CCA 2A1 Connect multimeter between 2A3A-E22 and ground	Meter indicates 100 ohms or more	Yes step 140 No step 44
39	Check components 2A3AC10, 2A3AL10, 2A3AC15, 2A3AC11. 2A3AL11 and 2A3AC14 for shorts and/or shorts to ground	Components check good trolLoglc CCA 2A1, go	Yes reinstall Con- to step 139 No: replace faulty component Reinstall Control Logic CCA 2A1
40	Connect multimeter between 2A3A-E17 and ground	Meter indicates + $28 \mathrm{VDC} \pm 1.5 \mathrm{VDC}$	Yes step 41 No step 45
41	Connect multimeter between 2A3A-E18 and ground Depress and hold TUNE START	Meterindicates $+28 \mathrm{VDC} \pm 1.5 \mathrm{VDC}$	Yes step 42 No step 49
42	Set mode switch to OFF Remove control Logic CCA 2A1 Continuity check 2A3A-E18 to 2XA1-A	Continuity check good	Yes step 140 No step 139
43	Check component 2A3AL4A	Component checks good	Yes step 139 No replace faulty component Reinstall Control Logic CCA 2A1
44	Check components 2A3AC4, 2A3A1A and 2A3AC21 for shorts and/or shorts to ground	Components check good	Yes step 139 No replace faulty component Reinstall Control Logic CCA 2A1
45	Connect multimeter between 2K1-9 and ground	Meter indicates + 28 VDC + 1.5 VDC	Yes step 46 No step 139
46	Connect multimeter between $2 \mathrm{~K} 1-13$ and ground	Meter indicates + $28 \mathrm{VDC} \pm 1.5 \mathrm{VDC}$	Yes step 147 No step 139
47	Set mode switch to OFF Check components 2A3AL7, 2CR4, and 2K1 coil	Components check good	Yes step 148 No replace faulty component
48	Set mode switch to CPLR TUNE KW multimeter between 2K1-5 and ground	Connect Meter indicates + 28VDC $\pm 1.5 \mathrm{VDC}$	Yes step 139 No replace relay 2 K 1
49	Set mode switch to OFF Check components 2A3AL8, 2A3AC8, 2A3AC17 and 2A3AL9	Components check good	Yes step 139 No replace faulty component
50	Set frequency to 1802 MHz Depress TUNE START	Both drive motors, 2M1 and 2M2, drive	Yes step 3b No step 51
51		Drive motor 2M1 drives	Yes step 52
52	Set mode switch to OFF Remove Phase and Amplitude CCA 2A2 CAUTION When testing at connector, take care not to short adjacent connector contacts CAUTION Ensure the roller on 2L4 is positioned near center of travel before beginning the following checks	No step 59	

Table 4-3. Checkout/Troubleshoot the Antenna Coupler CU-2229/URC -92--Continued ACTION

NOTE
For steps requiring jumpers, remove jumper before motor drives to end stop
Set mode switch to AM Momentarily jumper 2XA2-V to ground
Momentarily jumper 2XA2-17 to ground
Connect VTVM between 2XA2-U and ground CAUTION
Ensure VTVM Is isolated from ground
Connect VTVM between 2XA2-16 and 2XA2-U
Set mode switch to CPLR TUNE KW Connect VTVM between 2XA2-14 and ground Depress and hold TUNE START
Set mode switch to OFF Connect multimeter between 2XA2-7 and ground
Connect multimeter between 2XA2-15 and ground

Set mode switch to OFF Remove Phase and Amplitude CCA 2A2

CAUTION
When testing at connectors, take care not to short adjacent connector contacts

CAUTION
Ensure the 2C1 sensor bar is positioned near center of travel before beginning the following checks

NOTE

For steps requiring jumpers, remove jumper before sensor contacts micro switches Set mode switch to AM Momentarily jumper 2XA2-4 to ground
Momentarily jumper 2 XA2 -5 to ground
Connect VTVM between 2XA2-3 and ground CAUTION
Ensure VTVM Is Isolated from ground
Connect VTVM between 2XA2-2 and 2XA2-3
Set mode switch to CPLR TUNE KW Connect VTVM between 2XA2-6 and ground Depress and hold TUNE START
Set mode switch to OFF Connect multimeter between 2XA2-8 and ground
Connect multimeter between 2XA2-11 and ground
Connect VTVM between 2XA2-T and ground

Set mode switch to OFF Disconnect connector from Servo Control Assy 2A6 Connect multlmeter between 2M2-1 and 2M2-2

Continuity check the following
2XA2-V to 2XA6-C
2XA2-17 to2XA6-H
2XA6-B to 2M2-1
2XA6-E to 2M2-2

Motor 2M2 rotates clockwise (viewed from shaft	Yes step 53
end)	No step 67
Motor 2M2 rotates counterclockwise	Yes step 54
	No step 68
Meter indicates + 10 VDC ± 0.8 VDC	Yes step 55
	No step 139
Meter indicates a voltage difference (+ or -)	Yes step 56
	No step 70
Meter indicates + 3 VDC to + 5 VDC	Yes step 57
	No step 71
Meter indicates 200 ohms or more	Yes step 58
Meter indicates 1000 ohms or more	No step 72
	Yes step 141
Drive motor 2M2 drives	No step 74
	Yes step 60
	No step 75

Motor 2M1 rotates clockwise (viewed from shaft	Yes step 61
end)	No step 78
Motor 2M 1 rotates counterclockwise	Yes step 62
	No step 84
Meter indicates + 10 VDC ± 0.8 VDC	Yes step 63
	No step 139
Meter indicates a voltage difference (+ or -)	Yes step 64
	No step 81
Meter indicates + 3 VDC to +5 VDC	Yes step 65
	No step 82
Meter indicates 1000 ohms or more	Yes step 66
	No step 83
Meter indicates 1000 ohms or more	Yes step 141
	No step 84
Yes step 68	
Meter indicates 0 VDC ± 0.5 VDC	No reinstall removed
	components, go
to step 141	

Table 4-3 Checkout/Troubleshoot the Antenna Coupler CU-2229/URC- 92-Continued

ACTION

Connect VTVM between feed thru capacitors 2A4C19 and 2A4C17

Set mode switch to OFF Continuity check 2XA1-R to 2XA2-14

Check that 2S1 L MAX switch (roller and 1, MAX plunger) is not activated

Remove Control Logic CCA 2A1 Connect multlmeter between 2XA2-7 and ground

Check that 2S2 L MIN switch (roller and L MIN plunger) is not activated

Set mode switch to OFF Remove Control Logic CCA 2A1. Set mode switch to AM Connect VTVM between 2XA1-3 and 2XA1-F Connect VTVM between 2XA1-B and ground

Set mode switch to OFF Reinstall Control Logic CCA 2A1 Remove Phase and Amplitude Control CCA 2A2 Set mode switch to CPLR TUNE KW Connect VTVM between 2XA2-10 and ground Connect VTVM between 2XA2-12 and ground

Set mode switch to OFF Disconnect connector from Servo Control Assy 2A6 Connect multimeter between 2M1-1 and 2M1-2

Continuity check the following
2XA2-5 to 2XA6-R
2XA2-4 to 2XA6-D
2XA6-N to 2M2-1
2XA6-P to2M2-2

Connect VTVM between feed thru capacitors 2A4C21 and 2A4C20

Set mode switch to OFF. Continuity check 2XA1-13 to 2XA1-6.

INDICATION

Meter indicates a voltage difference of more than 01 VDC(+ or -)

Continuity checks good

2S1 checks good

Meter indicates 1000 ohms or more No

2S2 checks good

Meter Indicates greater than 0.1 VDC
Meter indicates $\pm 12 \mathrm{VDC} \pm 4 \mathrm{VDC}$
Meter indicates $0 \mathrm{VDC} \pm 0.5 \mathrm{VDC}$
Meter indicates $0 \mathrm{VDC} \pm 0.5 \mathrm{VDC}$
Meter indicates less than 50 ohms
Continuity checks good
Meter indicates a voltage difference of more than
$01 \mathrm{VDC}(+$ or-)

Continuity checks good

NEXT STEP
Yes: reinstall removed components, go to step 139
No: step 85
Yes: reinstall removed components, go to step 140
No: reinstall removed components, go to step 139
Yes: step 73
No: reinstall removed components, repair and/or adjust 2S1 LMAX
Yes: step 140
reinstall removed components, go to step 139
Yes: 139
No: reinstall removed components, repair and/or adjust 2S2 LMIN
Yes: step 76
No: step 85
Yes: step 77
No: step 86
Yes: step 141
No: reinstall removed components, go to step 140
Yes step 79
No: step 87
Yes: step 80
No: replace motor 2M1, reinstall removed components
Yes reinstall removed components, go to step 142
No: reinstall removed components, go to step 139
Yes reinstall removed components, go to step 143
No: step 88
Yes: reinstall removed components, go to step 140
No: reinstall removed components, go to step 139

Table 4-3 Checkout/Troubleshoot the Antenna Coupler CU-2229/URC- 92-Continued

$$
\text { ACTION }
$$

Check that 2S3 C MIN switch is not activated and
that 2S3 contacts are open

Check that 2S4 C MAX switch Is not activated
and that 2 S4 contacts are open

Perform Amplitude Detector Adjustment

Set mode switch to OFF Check wiring for continuity and shorts to ground between 2 J 2 and 2A3-E3 and between 2A3-E4 and 2XA1-B
Set mode switch to OFF. Disconnect connector
from Servo Control Assy 2A6 Set mode switch
to AM. Connect VTVM between 2XA6-M and
ground.

Perform Phase Detector Adjustment

Set mode switch to OFF Remove Control Logic
CCA 2A1 Set mode switch to CPLR TUNE KW
Connect VTVM between 2XA1-2 and ground
Continuity check the following
2A3-E8 to 2K1-12
2K1-8 to2XA1-2

2K1-8 to2XA1-2

Set frequency to 15.602

INDICATION	NEXT STEP
2S3 checks good	Yes: reinstall removed components. go to step 139
	No: reinstall removed components Replace switch 2S3, perform C MIN and C MAX adjustment
2S4 checks good	Yes: reinstall removed components. go to step 139
	No: reinstall removed components Re place 2S4, perform C MIN and C MAX adjustment
Amplitude Detector adjusts to within tolerance	Yes: reinstall removed components, go to step 3a.
	No: reinstall removed components, go to step 143
Wiring checks good	Yes: reinstall removed components, go to step 144
	No: reinstall removed components, go to step 139
Meter indicates 0 VDC $\pm 0.5 \mathrm{VDC}$	Yes: reinstall removed components, go to step 142
	No: reinstall removed components, go to step 140
Phase Detector adjusts to within tolerance	Yes: step 3a No: reinstall removed components, go to step 143
Meter indicates + $10 \mathrm{VDC} \pm 0.8 \mathrm{VDC}$	Yes: step 140 No: step 90
Continuity checks good	Yes: replace 2K1 Reinstall removed components
	No: reinstall removed components, go to step 139
COUPLER STATUS FAULT indicator s lit	Yes: step 92 No: step 101
NOTE	
If the time delay runs out during this test, de-	Yes: step 93
press TUNE START again If tuning occurs the	No: step 102
Antenna Coupler completes tune cycle and	Yes: step 93
COUPLER STATUS READY indicator illumlnates	No: step 102

Table 4-3 Checkout/Troubleshoot the Antenna Coupler CU-2229/URC- 92-Continued

ACTION
Set mode switch to OFF Remove Control Logic CCA2A1

CAUTION

When testing at connectors, take care not to short adjacent connector contacts
Set mode switch to AM. Momentarily jumper
2XA1-V to ground
Again momentarily jumper 2XA1-V to ground

Momentarily jumper 2XA1-17 to ground
Again momentarily jumper 2XA1-17 to ground
Set mode switch to OFF Insure 2L4 roller is not touching L MAX plunger
Rotate inductor 2 L 4 to position roller against L
MAX plunger(2S1)
Check components 2C6A-B-C-D-E and
$2 \mathrm{C} 3 \mathrm{~A}-\mathrm{B}$

Continuity check the following
2K2 contact to 2C6
2 C 6 to ground
2K3 contact to 2C3
Set mode switch to OFF Remove Control Logic CCA 2A1 Disconnect control cable from Antenna Coupler. Connect multimeter between 2P1-N and 2XA1-N

Check Amplitude Detector Adjustment Refer to
Section IV - Maintenance
Check Phase Detector Adjustment Refer to Section IV - Maintenance

Check 2K4, 2C4, 2R3, 2R4, 2R5, 2R6, 2R7 and
2R8
Check motor drive belts for $2 \mathrm{MI} / 2 \mathrm{C} 1$ and
2M2/2L4

Set mode switch to OFF Remove Phase and-Am-
plitude CCA 2A2 Connect multimeter between
2XA2-8 and ground Activate 2S3-C MIN
Connect multimeter between 2XA2-11 and
ground Activate 2S4-C MAX
Continuity check the following
2S1-L MAX to 2XA2-7
2S2-L MIN to2X2A-15
Reinstall Phase and Amplitude CCA 2A2 Check
limit switch adjustments (refer to Section IV -
Maintenance) for the following-
2S1-L MAX
2S2-L MIN
2S3-C MIN
2S4-C MAX
Remove Control Logic CCA2A1 Disconnect connector from Servo Control Assy 2A6 Set mode switch to AM Connect multimeter between 2XA6-A and ground

INDICATION
NEXT STEP
Relay 2K2 changes state
Relay 2K2 changes to the state opposite that of
step 94
2A5K1
Relay 2K3 changes state
Relay 2K3 changes to the state opposite that of
step 96.
2ASK2.
Meter indicates 300 ohms or more
Meter indicates 5 ohms or less
Components check good

Yes: step 94
No: step 115
Yes: step 95 No: replace relay

Yes: step 96
No: step 115
Yes: step 97
No: replace relay
Yes: step 98
No: step 139
Yes: step 99
No: step 139
Yes: step 100
No: replace faulty component Reinstall removed components.
Yes: reinstall removed components; go to step 140
No: step 139
Yes- reinstall re moved components; go to step 140
No: step 117
Yes: step 103
No: step 120
Yes. step 104
No: step 121
Yes: step 105
No: replace faulty component.
Yes: step 106
No: replace drive belts as required.
Yes: step 107
No: step 122
Yes: step108
No: step 123
Yes. step 109
No: reinstall removed components, go to step 139
Yes: step 110
No: perform neces sary limit switch adjustments; go to step 4a.

Yes: step 111
No: step 124

Table 4-3 Checkout/Troubleshoot the Antenna Coupler CU-2229/URC- 92-Continued

ACTION
CAUTION
When jumpering pins, take care not to short adja-
cent connector contacts
Set mode switch to OFF Jumper 2XA1-15 to
ground Set mode switch to AM Connect multim-
eter between 2XA6-A and ground
Set mode switch to OFF Remove jumper between
2XA1-15 and ground Reconnect connector to
Servo Control Assy Disconnect control cable at
Antenna Coupler Connect multimeter between
2P1-P and 2XA1-8
Check components 2C1,2L4, 2T1 and 2R10.

Check RF transmission line, point to point wiring.

NOTE

The following test is on a bistable relay The voltage when checked, may be either +28 VDC ± 1.5 VDC or 0 VDC This depends upon the relay state when the measurement is made
Connect multimeter between 2A5-E2 and ground. Record meter indication Momentarily
jumper 2XA1-V to ground
Set mode switch to OFF. Check the following components:
2K2
2CR5

NOTE

The following test is on a bistable relay. The voltage, when checked, may be either +28 VDC ± 1.5 VDC or O VDC This depends upon the relay state when the measurement is made
Connect multimeter between 2A5-E5 and ground. Record meter indication Momentarily jumper 2XA1-17 to ground.
Set mode switch to OFF Check the following components:
2 K 3
2CR6
Check components 2A3AC3, 2A3AL3 and
2A3AC22 for shorts and/r shorts to ground.
Perform Amplitude Detector Adjustment.
Perform Phase Detector Adjustment.
Connect multimeter across 2S3-C MIN normal-
ly open contacts Activate 2S3-C MIN.

Connect multimeter across 2S4-C MAX normally open contacts Activate 2S4-C MAX.

INDICATION

Meter indicates +9 VDC ± 0.8 VDC.

Meter indicates 10 ohms or less.

Components check good.

RF transmission line wiring checks good

If recorded meter indication was 0 VDC, then meter Indicates $+28 \mathrm{VDC} \pm 1.5 \mathrm{VDC}$ If recorded meter indication was $+28 \mathrm{VDC} \pm 1.5 \mathrm{VDC}$, then meter indicates 0 VDC

Components check good.

If recorded meter indication was 0 VDC, then me-	Yes. step 118
ter indicates +28 VDC ± 1.5 VDC If recorded	No: step 128
meter indication was +28 VDC ± 1.5 VDC, then	
meter indicates 0 VDC	
Components check good.	Yes: step 139
	No: replace faulty
component	

Table 4-3 Checkout/Troubleshoot the Antenna Coupler CU-2229/URC- 92-Continued

STEP

ACTION

Check relay 2K4 coil and contacts for proper operation.
Check resistor 2R9.
Check components 2A3AC6, 2A3AL6 and 2A3AC19.

Check bistable relay 2A5K1 coil and contacts for proper operation.

Check bistable relay 2A5K2 coil and contacts for proper operation.
Check Amplitude Detector Adjustment.
Check Phase Detector Adjustment.
Set mode switch to OFF Remove Control Logic CCA 2A1 Disconnect control cable at Antenna Coupler Connect multimeter between 2P1-P and 2XA1-8.
Connect multimeter between 2XA1-8 and ground.
Connect multimeter between 2P1-g and 2XA1-9.
Connect multimeter between 2XA1-9 and ground
Perform Amplitude Detector Adjustment
Perform Phase Detector Adjustment
Check components 243AC6, 2A3AL6 and
2A3AC19 for opens, shorts and shorts to ground

Check components 2A3AC2, 2A3AL2 and 2A3AC23 for opens, shorts and shorts to ground

Repair and/or replace wiring and connectors as necessary
Replace and/or repair Control Logic CCA 2A1.
Use conventional troubleshooting methods for
CCA repair
Replace and/or repair Phase and Amplitude CCA 2A2. Use conventional troubleshooting methods for CCA repair
Replace and/or repair Servo Control Assy 2A6 Use conventional troubleshooting methods for repair
Replace and/or repair Phase and Amplitude Assy
2A4. Perform Amplitude Detector Adjustment
and Phase Detector Adjustment Use conven-
tional troubleshooting methods for repair
Replace and/or repair Regulator CCA 2A3. Use
conventional troubleshooting methods for repair

INDICATION
NEXT STEP
Relay checks good
Resistor checks good
Components check good
Bistable relay checks good
Bistable relay checks good

Amplitude Detector Is within tolerance
Phase Detector adjusts to within tolerance
Meter indicates 10 ohms or less

Meter indicates 1000 ohms or more
Meter indicates 1000 ohms or more
Meter indicates 1000 ohms or more
Amplitude Detector adjusts to within tolerance
Phase detector adjusts to within tolerance
Components check good

Components check good

Section IV. MAINTENANCE

4-7. General

General support maintenance of the AN/URC-92 is limited to the replacement and/or repair of wiring and connectors, circuit card replacement and/or repair and the procedures outlined in this manual.

4-8. Power Supply 1A6

(Fig 4-3)
a. Removal.
(1) Remove transceiver top cover.
(2) Remove transceiver bottom cover.
(3) Remove four screws holding Synthesizer 1A4 protective cover and remove protective cover.
(4) Extract Spectrum Generator 1A4A1, Low Digit Generator 1A4A2, Translator 1A4A3, and VHF Divider 1A4A4 circuit card assemblies.
(5) Remove two screws and washers (16) holding Power Supply 1A6 to Synthesizer 1A4.
(6) Remove one screw and washer (15) mounting power supply to chassis assembly.
(7) Remove two screws (17) mounting power supply to rear panel.
(8) Remove six screws mounting rear panel to right and left side panels and pull away rear panel
(9) Remove four screws (1) from Regulator Assembly 1A6A1 protective cover (2) and remove cover.
(10) Remove two standoffs (3) from Regulator Assembly 1A6A1 (25).
(11) Remove four screws (4) and washers (5) mounting capacitors 1A6AIC5 (9) and 1A6A1C9 (10) and remove capacitors.
(12) Remove two mounting screws (21) and washers (19 \& 20) from connector 1A6XA1 (18).
(13) Extract Regulator Assembly 1A6A1 (22) from connector 1A6XA1 (18).
(14) Remove two mounting screws (11) and washers (12 \& 13) from terminal board 1A6TB1 (14).

NOTE

Reposition terminal board 1A6TB1 to access screws mounting Power Supply 1A6 to transformer 1A6T1.
(15) Remove four screws (8) and washers (7) mounting Power Supply 1A6 to Power Transformer 1A6T1 (6) and remove Power Supply.
b. Replacement.
(1) Position Power Supply 1A6 in place and secure with four screws (8) and washers (7) to Power Transformer 1A6 T1 (6).
(2) Position terminal board 1A6TB1 (14) in place and secure with two mounting screws (11) and washers ($12 \& 13$).

CAUTION

Component side of Regulator Assembly must face top of transceiver.
(3) Reinstall Regulator Assembly 1A6A1 (22) into connector 1A6XA1 (18).
(4) Position rubber support (23) between Regulator Assembly 1A6A1 (22) and Power Supply 1A6.

CAUTION

Positive terminals of capacitors 1A6A1C5 and 1A6A1C9 must match positive markings on Regulator Board.

(5) Position capacitors 1A6A1C5 (9) and 1A6A1C9 (10) and secure each with two mounting screws (4) and washers (5) through Regulator Assembly 1A6A1 (22).
(6) Reinstall two mounting screws (21) and washers (19 \& 20) in connector 1A6XA1 (18).
(7) Reinstall two standoffs (3) on Regulator Assembly 1A6A1 (22).
(8) Position Regulator Assembly 1A6A1 protective cover (2) and secure with four screws (1).
(9) Position rear panel in place and secure with six mounting screws to left and right side panels.
(10) Reinstall two power supply mounting screws (17) through rear panel.
(11) Reinstall one power supply mounting screw (15) through chassis assembly.
(12) Reinstall two power supply mounting screws (16) through Synthesizer 1A4.

CAUTION

When reinstalling Spectrum Generator, Low Digit Generator, Translator, and VHF Divider circuit card assemblies, component side must face rear of transceiver.
(13) Reinstall Spectrum Generator 1A4A1, Low Digit Generator 1A4A2, Translator 1A4A3, and VHF Divider 1A4A4 circuit card assemblies.
(14) Position Synthesizer 1A4 protective cover in place and secure with four mounting screws.
(15) Reinstall transceiver bottom cover.
(16) Reinstall transceiver top cover.

4-9. Power Transformer (1A6T1)

(Fiq 4-3)
a. Removal.
(1) Remove transceiver top cover
(2) Remove transceiver bottom cover.
(3) Remove four screws (1) from Regulator Assembly 1A6A1 protective cover (2) and remove cover.
(4) Remove two standoffs (3) from Regulator Assembly 1A6A1 (22).
(5) Remove two screws (4) and washers (5) from capacitor 1A6A1C5 (9) and remove capacitor.
(6) Remove two screws (4) and washers (5) from capacitor 1A6A1C9 (12) and remove capacitor.
(7) Remove two mounting screws (21) and washers (19 \& 20) from connector 1A6XA1 (21).
(8) Extract Regulator Assembly 1A6A1 (20) from connector 1A6XA1 (18).
(9) Remove two mounting screws (11) and washers (12 \& 13) from terminal board 1A6TB1 (16)

NOTE

Reposition terminal board 1A6TB1 for access to screws mounting transformer 1A6T1.
(10) Remove three screws mounting right side panel to front panel.
(11) Remove five screws mounting right side panel to chassis assembly.
(12) Remove three screws mounting right side panel to rear panel.
(13) Remove four screws mounting right side panel to Power Transformer 1A6T1 (6) and remove right side panel
(14) Remove four screws (8) and washer (7) mounting Power Transformer 1A6T1 (6) to the Power Supply 1A6.
(15) Record Power Transformer 1A6T1 wiring and remove Power Transformer.
b. Replacement.
(1) Make proper Power Transformer wiring connections.
(2) Position Power Transformer 1A6T1 (6) in place and install with four mounting screws (8) and washers (7) through Power Supply 1A6.
(3) Position right side panel in place and install with four screws to Power Transformer 1A6T1.
(4) Reinstall three mounting screws to front panel.
(5) Reinstall five mounting screws to chassis assembly.
(6) Reinstall three mounting screws to rear panel.
(7) Position terminal board 1A6TB1 (14) in place and secure with two mounting screws (11) and washers ($12 \& 13$).

CAUTION

Components side of Regulator Assembly

 must face top of transceiver(8) Reinstall Regulator Assembly 1A6A1 (22) into connector 1A6XA1 (18).
(9) Position rubber support (23) between Regulator Assembly 1A6A1 (22) and Power Supply 1A6.

CAUTION

Positive terminals of capacitors 1A6A1C5 and 1A6A1C9 must match positive markings on Regulator Board
(10) Position capacitors 1A6A1C5 (9) and 1A6A1C9 (10) and secure with four mounting screws (4) and washers (5) through Regulator Assembly 1A6A1 (22).
(11) Reinstall two mounting screws (21) and washers (19 \& 20) in connector 1A6XA1 (18).
(12) Reinstall two standoffs (3) on Regulator Assembly 1A6A1 (22).
(13) Position protective cover (2) in place and secure with four mounting screws (1)
(14) Reinstall transceiver bottom cover
(15) Reinstall transceiver top cover.

4-10. Regulator Assembly

(Fig 4-3)
a Removal.
(1) Remove transceiver top cover
(2) Remove four screws (1) from Regulator Assembly 1A6A1 protective cover (2) and remove cover.
(3) Remove two standoffs (3) from Regulator Assembly 1A6A1 (22).
(4) Remove four screws (4) and washers (5) mounting capacitors 1A6A1C5 (9) and 1A6A1C9 (10) and remove capacitors.
(5) Remove two mounting screws (21) and washers (19 \& 20) from connector 1A6XA1 (18)
(6) Extract Regulator Assembly 1A6A1 (22) from connector 1A6XA1 (18)

b Replacement

CAUTION

Component side of Regulator Assembly must face top of transceiver.

(1) Reinstall Regulator Assembly 1A6A1 (22) into connector 1A6XA1 (18).
(2) Position rubber support (23) between Regulator Assembly 1A6A1 (22) and Power Supply 1A6.

CAUTION

Positive terminals of capacitors 1A6A1C5 and 1A6A1C9 must match positive markings on Regulator Board.
(3) Position capacitors 1A6AIC5 (9) and 1A6A1C9 (10) and secure each with two mounting screws (4) and washers (5) through Regulator Assembly 1A6A1 (22).
(4) Reinstall two mounting screws (21) and washers (19 \& 20) in connector 1A6XA1 (18).
(5) Reinstall two standoffs (3) on Regulator Assembly 1A6A1 (22).
(6) Position Regulator Assembly 1A6A1 protective cover (2) and secure with four screws (1).
(7) Reinstall transceiver top cover.

4-11. Receiver/Exciter Mother Board

a. Removal.
(1) Remove transceiver top cover.
(2) Remove transceiver bottom cover.
(3) Remove four mounting screws from Receiver/Exciter top protective plate and remove plate.
(4) Extract Audio 1A3A4, Sideband Generator 1A3A3, IF Filter 1A3A2 and VHF Mixer 1A3A1 circuit card assemblies.
(5) Extract protective card shield
(6) Remove four mounting screws and washers

EL5EB048
Figure 4-3 Power Supply
from Receiver/Exciter bottom shield and remove bottom shield.
(7) Disconnect connector 1A1P2 from connector 1A3A5J5.
(8) Remove four mounting screws from Receiver/Exciter Mother Board 1A3A5.
(9) Remove two mounting screws and washers from Receiver/Exciter Coax Bracket and remove bracket.
(10) Label all wiring connections.
(11) Unsolder wires and remove Receiver/Exciter Mother Board 1A3A5.
b. Replacement.
(1) Make necessary wiring connections.

NOTE

When securing Receiver/Exciter Mother Board in place, two loop clamps are used to retain wiring.
(2) Position Receiver/Exciter Mother Board 1A3A5 in place and secure with four mounting screws.
(3) Position Receiver/Exciter Coax Bracket in place and secure with two mounting screws and washers.
(4) Reconnect connector 1A1P2 to connector 1A3A5J5.
(5) Position Receiver/Exciter bottom shield in place and secure with four mounting screws and washers.

NOTE

When installing Audio, Sideband Generator, IF Filter, and VHF Mixer circuit card assemblies, components side must face front of transceiver.
(6) Reinstall Audio 1A3A4, Sideband Generator 1A3A3, IF Filter 1A3A2, VHF Mixer 1A3A1 circuit card assemblies.
(7) Reinstall protective card shield.
(8) Position Receiver/Exciter top protective plate in place and secure with four screws.
(9) Replace transceiver bottom cover.
(10) Replace transceiver top cover.

4-12. Synthesizer Mother Board

a. Removal.
(1) Remove transceiver top cover.
(2) Remove transceiver bottom cover.
(3) Remove four mounting screws from Synthesizer top protective plate and remove plate.
(4) Remove six mounting screws attaching front panel to transceiver and swing front panel downward.
(5) Remove four mounting screws and washers from VCO 1A4A5 and extract VCO.
(6) Extract Spectrum Generator 1A4A1, Low Digit Generator 1A4A2, Translator 1A4A3, and VHF Divider 1A4A4 circuit card assemblies.
(7) Remove four mounting screws and washers from Snythesizer bottom shield and remove shield (8)

Disconnect connector 1A1P3 from connector 1A4A6J1.
(9) Remove four mounting screws from Synthesizer Mother Board 1A4A6.
(10) Remove two mounting screws and washers from Snythesizer coax bracket and remove bracket.
(11) Label all wiring connections.
(12) Unsolder wires and remove Synthesizer Mother Board 1A4A6.
b. Replacement
(1) Make necessary wiring connections.
(2) Position Synthesizer Coax Bracket m place and secure with two mounting screws and washers.
(3) Position Synthesizer Mother Board 1A4A6 and secure with four mounting screws.
(4) Reconnect connector 1A1P3 to connector 1A4A6J1.
(5) Position Synthesizer bottom shield in place and secure with four mounting screws.

NOTE

When installing Spectrum Generator, Low Digit Generator, Translator, and VHF Divider circuit card assemblies, component side must face rear of transceiver.
(6) Reinstall Spectrum Generator 1A4A1, Low Digit Generator 1A4A2, Translator 1A4A3, and VHF Divider 1A4A4 circuit card assemblies.
(7) Reinstall VCO 1A4A5 and secure with four mounting screws and washers.
(8) Position Front Panel in place and secure with six mounting screws.
(9) Position Synthesizer top protective plate in place and secure with four mounting screws.
(10) Reinstall transceiver bottom cover.
(11) Reinstall transceiver top cover.

4-13. Filter Module

(Fiq 4-4)
a. Removal.
(1) Remove transceiver top cover.
(2) Remove transceiver bottom cover.
(3) Disconnect connector 1A8P2 from connector 1A5J1
(4) Disconnect connector 1A8P4 from connector 1A5J2.
(5) Disconnect connector 1A3P4 from connector 1A5J3.
(6) Disconnect connector 1A8P5 from connector 1A5J4.
(7) Remove two mounting screws (3) from filter support bracket (2).
(8) Remove two mounting screws (6) and washers (5) from filter assembly cradle (4) and lift out Filter Module 1A5 (1).
b. Replacement.

Figure 4-4. Filter Module
(1) Position Filter Module 1A5 (1) in place and secure with two mounting screws (3) through filter support bracket (2).
(2) Reinstate two mounting screws (6) and washers (5) through filter assembly cradle (4).
(3) Reconnect connector 1A3P5 to connector 1A5J4.
(4) Reconnect connector 1A3P4 to connector 1A5J3.
(5) Reconnect connector 1 A 8 P 4 to connector 1A5J2.
(6) Reconnect connector 1A8P2 to connector 1A5J1.
(7) Replace transceiver top cover.
(8) Replace transceiver bottom cover.

4-14. Motor Control Board (1), and Receiver Filter (2), Even Channel Filter (3), and Odd Channel Filter (4) Assemblies
(Fig 4-5
a. Removal.

NOTE

Remove Filter Module 1A5 following Filter Module removal procedures
(1) Remove four mounting screws (8) and pull out circuit card assemblies from shield box (7).
(2) Remove four mounting nuts (9), flat washers (10), and lock washers (11).
(3) Remove threaded rod (12) and spacers (13, 14 and 15).
(4) Label and unsolder wires.
(5) Pull circuit cards off of glass shaft (5).
b. Replacement.

CAUTION

When inserting circuit cards on glass shaft (5) make certain that index marks in wafer slots (6) are aligned.
(1) Make proper wiring connections,

NOTE

Medium spacer fits between Odd Channel Filter (4) and Even Channel Filter (3). Small spacer fits between Even Channel Filter (3) and Receive Filter (2). Large spacer fits between Receive Filter (2) and Motor Control Board (1).
(2) Position circuit cards in place and reinstall threaded rod (12) and spacers (13, 14 and 15).
(3) Reinstall four mounting nuts (9), flat washers (10), and lock washers (11).

NOTE

When inserting circuit card assemblies in shield box (7) relays 1A5A4K1 and 1A5A4K2 must match up with long side of shield box.
(4) Position circuit card assemblies in place and reinstall four mounting screws (8)
(5) Reinstall Filter module 1A5 following Filter Module replacement procedures

4-15. Display CCA

Fig 4-6
a. Removal.
(1) Remove transceiver top cover
(2) Remove six mounting screws from front panel

1A1 to transceiver and swing front panel downward.
(3) Disconnect connector 1A1J5 from connector 1A1A2J2 on Decoder 1A1A2 (4).
(4) Remove two mounting screws (1), flat washers (3) and lock washers (2) from Decoder 1A1A2 (4) and remove Decoder 1A1A2.
(5) Remove two loose spacers (5) between Decoder 1A1A2 (4) and Display 1A1A3 (6).
(6) Remove two mounting nuts, flat washers, and lock washers (7) from Display 1A1A3 (6) and remove Display.
(7) Remove lens and bezel (8) from front of Front Panel.
b. Replacement.
(1) Position bezel and lens (8) in place.
(2) Position Display 1A1A3 (6) in place and secure with two mounting nuts, flat washers, and lock washers (P/O 7).
(3) Position two spacers (5) in place between Display 1A1A3 (6) and Decoder 1A1A2 (4)
(4) Position Decoder 1A1A2 (4) in place and secure with two mounting screws (1), flat washers (3), and lock washers (2).
(5) Connect connector 1A1J5 to connector 1A1A2J2.
(6) Position front panel m place and secure with

Figure 4-5. Filter Module Circuit Cards
six mounting screws.
(7) Reinstall transceiver top cover.

4-16. Decoder CCA

(Fig 4-6)
a. Removal.
(1) Remove transceiver top cover.
(2) Remove six mounting screws from front panel

1A1 to transceiver and swing front panel downward.
(3) Disconnect connector 1A1J5 from connector 1A1A2J2 on Decoder 1A1A2 (4).
(4) Remove two mounting screws (1), flat washers (3), and lock washers (2) from Decoder 1A1A2 (4) and remove Decoder.
(5) Remove two loose spacers (5) between decoder 1A1A2 (4) and display 1A1A3 (6).
b. Replacement.

CAUTION

Decoder connector 1A1A2J2 should be facing to the top and rear of transceiver.
(1) Position two spacers (5) in place between Display Assembly (6) and Decoder (4).
(2) Position Decoder (4) in place and secure with two mounting screws (1), flat washers (3) and lock washers (2).
(3) Connect connector 1A1J5 to 1A1A2P2.
(4) Position front panel in place and secure with six mounting screws.
(5) Reinstall transceiver top cover.

4-17. Speaker Driver CCA

a. Removal.
(1) Remove transceiver top cover.
(2) Remove six mounting screws from front panel to transceiver and position front panel 1A1 for access to Speaker Driver 1A1A1.
(3) Remove two mounting screws, flat washers and lock washers from Speaker Driver 1A1A1.
(4) Label all wiring connections
(5) Unsolder wires and remove Speaker Driver Board 1A1A1.
b. Replacement.

CAUTION

Component side of Speaker Driver Board

 should face the front of the transceiver.(1) Make proper wiring connections.
(2) Position Speaker Driver Board 1A1A1 in place and secure with two mounting screws, flat washers and lock washers.
(3) Position Front Panel 1A1 in place and secure with six mounting screws.
(4) Reinstall transceiver top cover.

Figure 4-6. Display Assembly

4-18. Receiver-Transmitter RT-1277/URC-92 Adjustments.

The following adjustments are not intended as a means of circuit card assembly checkout or troubleshooting. If an adjustment cannot- be performed, troubleshoot the related circuit card assembly using conventional troubleshooting methods for repair Refer to the List of Illustrations for required schematic figure numbers
a. Spectrum Generator 1A4A1 Adjustment.
(1) Remove receiver-transmitter top cover Remove Synthesizer protective cover Place Spectrum Generator CCA 1A4A1 on card extender Connect a 50 ohm dummy load to receiver-transmitter ANT jack.
(2) 20 MHz Adjustment(1A4A1).
(a) Connect oscilloscope probe to 1A4A1-1. Connect frequency counter to oscilloscope vertical amplitude output.

NOTE

The following adjustment involves three interacting components Due to this interaction, the adjustment of each component should be repeated until maximum output is obtained.
(b) Adjust 1A4A1L2, 1A4A1L3 and 1A4A1L4 for maximum output Minimum acceptable output is 300 mV peak-to-peak at a frequency of $20 \mathrm{MHz} \pm 20 \mathrm{~Hz}$.
(3) 21 Mhz Adjustment.
(a) Connect VTVM (AC) (unterminated) to 1A4A1-4. Connect signal generator as shown in Figure 47.
(b) Jumper 1A4A1U8-2 to CCA ground. Jumper across 1A4A1L7 Set signal generator for 250 mV RMS.

NOTE
The following adjustment involves three interacting components. Due to this interaction, the adjustment of each component should be repeated until maximum output is obtained.

EL5EB053
Figure 4-7. 21 MHz Adjustment Setup (1A4A1)
(c) Adjust 1A4A1L10, 1A4A1L9 and 1A4A1L8 for maximum output First adjust L10, then L9, and then

L8. Repeat as necessary to obtain maximum output as indicated by the RF voltmeter.
(d) Remove resistive pad connected between L10 and ground. Remove jumpers from 1A4A1U8-2 and 1A4A1L7. VTVM (AC) remains connected to 1A4A1-4. Again adjust L10, L9 and L8, as in step (c) above, until maximum output is attained. Minimum acceptable output, when adjusted, is 85 mV RMS.
(4) 17 MHz Adjustment (1A4A1).
(a) Connect VTVM (AC) (unterminated) to 1A4A1-6. Connect signal generator as shown in Figure 48. Jumper junction of 1A4A1C56, C61 and R50 to CCA ground.

EL5EB054
Figure 4-8. 17MHz Adjustment Setup (1A4A1)
NOTE
The following adjustment involves two interacting components. Due to this interaction, the adjustment of each component should be repeated until maximum output is obtained.
(b) Adjust 1A4A1L16 and 1A4A1L17 for maximum output.
(c) Remove jumper from C56, C61, R50 junction. Remove resistive pad connected between 1A4A1Q6 and ground VTVM remains connected to 1A4A1-6.
(d) Adjust 1A4A1L14 for maximum output Again adjust L16 and L17 for maximum output. Minimum acceptable output, when adjusted, is 90 mV RMS.
(5) Remove card extender and reinstall Spectrum Generator CCA 1A4A1 Reinstall Synthesizer protective cover Reinstall receiver-transmitter top cover. Remove dummy load.
b. Low Digit Generator 1A4A2 Adjustment.
(1) Remove receiver-transmitter top cover. Remove Synthesizer protective cover. Place Low Digit Generator CCA 1A4A2 on card extender. Connect a 50 ohm dummy load to receiver-transmitter ANT jack.
(2) VCO Adjustment (1A4A2)
(a) Connect VTVM between 1A4A2-TP3 and ground.

NOTE

The following two steps involve two interacting components. Due to this, the adjustments should be worked together for the desired output.
(b) Set $100 \mathrm{~Hz}, 1 \mathrm{KHz}$ and 10 KHz to 5 Adjust 1A4A2L3 for a VTVM indication of 195 VAC ± 025 VAC.
(c) Set 10 KHz to 0 Adjust 1A4A2C8 for a VTVM indication of 1.95 VAC ± 0.25 VAC.
(3) Remove card extender and reinstall Low Digit Generator CCA 1A4A2. Reinstall Synthesizer protective cover. Reinstall receiver-transmitter top cover. Remove dummy load.
c. Translator 1A4A3 Adjustment.
(1) Remove receiver-transmitter top cover Remove Synthesizer protective cover. Place Translator 1A4A3 on card extender. Connect a 50 ohm dummy load to receiver-transmitter ANT jack.
(2) 21 MHz Adjustment (1A4A3).
(a) Connect oscilloscope to 1A4A3-TP4. Set front panel VFO PULL control to in position.
(b) Adjust 1A4A3-L13 for maximum output. Minimum acceptable output is 800 mV peak-to-peak at a 0.0476 usec repetition rate.
(3) VFO Adjustment
(a) Connect oscilloscope to 1A4A3-TP4. Connect frequency counter to oscilloscope vertical amplitude output. Connect VTVM (AC) between 1A4A3-A and ground. Pull VFO PULL control to its out position.
(b) Rotate VFO PULL control for a VTVM indication of 7.6 VDC. Observe oscilloscope and adjust 1A4A3L23 until an oscillation is indicated on the scope.
(c) Continue to adjust L23 in the same direction and note adjustment range until oscillation stops. Adjust L23 to approximate midpoint of available adjustment range.

NOTE

If the following indication cannot be achieved, a slight readjustment of L23 is acceptable to obtain the correct frequency count.
(d) Adjust 1A4A3L22 for a frequency counter indication of $21 \mathrm{MHz} \pm 100 \mathrm{~Hz}$. Oscilloscope should indicate a minimum sine wave of 700 mV peak to peak.
(4) 19.45 MHz Adjustment (1A4A3)
(a) Remove Low Digit Generator CCA 1A4A2. Connect VTVM (AC) 1A4A3U3-6. Jumper 1A4A3U1-2 to CCA ground. Connect signal generator as shown in Figure 4-9.

Figure 4-9. 19.45 MHz Adjustment Setup \#1 (1A4A3) NOTE
As adjustment progresses in the following step, reduce signal generator output level to maintain VTVM indication below 100 mV RMS.
(b) Using frequency counter, set signal generator for 1945 MHz Set signal generator level to 250 mV RMS Adjust 1A4A3L3 and 1A4A3L5 for maximum VTVM indication.
(c) Connect signal generator as shown in Figure 4-10.

Figure 4-10. 19.45MHz Adjustment Setup \#2(1A4A3)
NOTE
The following adjustment involves two interacting components. Due to this interaction, the adjustment of each component should be repeated until maximum output is obtained.

NOTE
As adjustment progresses in the following step, reduce signal generator output level to maintain RF voltmeter indication below 100 mV RMS.
(d) Adjust 1A4A3L2 and then 1A4A3L3 for maximum VTVM indication.
(e) Connect signal generator as shown in Figure 4-11.

EL5EB057
Figure 4-11. 19.45 MHz Adjustment Setup \#3 (1A4A3) NOTE
The following adjustment involves three interacting components Due to this interaction the adjustment of each component should be repeated until maximum output is obtained

NOTE

As adjustment progresses in the following step, reduce signal generator output level to maintain VTVM indication below 100 mV RMS.
(f) Adjust 1A4A3L1, then 1A4A3L2 and then 1A4A3L3 for maximum VTVM Indication.
(g) Remove Isolation pad connected between L1 and ground Remove jumper from 1A4A3U1-2. Reinstall Low Digit Generator CCA 1A4A2 Connect VTVM (AC) between 1A4A3U3-1 and ground Connect RF voltmeter to 1A4A3-TP1 using a 50 ohm termination.

NOTE

The following adjustment involves four interacting components Due to this interaction the adjustment of each component should be repeated until maximum output is obtained.
(h) Carefully readjust L1, L2, L3, and L5 for maximum VTVM indication.
(5) 2nd Local Oscillator Adjustment
(a) Connect oscilloscope to 1A4A3-11. Ground scope to CCA ground Connect frequency counter to oscilloscope vertical amplitude output.
(b) Adjust 1A4A3L25 to approximately the midpoint of its adjustment range. Adjust 1A4A3L17 for 80.75 MHz. Readjust L25 for maximum output Minimum acceptable output is 300 mV peak-to-peak at $80.75 \mathrm{MHz} \pm$ 4 KHz .
(6) 10075 MHz Bandpass Filter Adjustment (1A4A3).
(a) Jumper junction of 1A4A3Q8 gate \#1 and R70 to CCA ground. Connect VTVM (AC) (w/50 ohm termination) to 1A4A3-TP3 Using frequency counter set signal generator to 100.75 MHz . Connect signal generator as shown in Figure 4-12.

EL5EB058
Figure 4-12. 100.75 MHz Bandpass Filter Adjustment Setup \#1
(b) Adjust 1A4A3L21 for maximum output.
(c) Connect signal generator as shown in

Figure 4-13. Frequency setting remains at 100.75 MHz .

EL5EB059
Figure 4-13. $\mathbf{1 0 0 . 7 5} \mathbf{~ M H z}$ Bandpass Filter Adjustment Setup \#2

NOTE

The following adjustment involves two interacting components. Due to this Interaction the adjustment of each component should be repeated until maximum output is obtained.
(d) Adjust 1A4A3L36 and then L21 for maximum VTVM indication.
(e) Connect signal generator as shown in Figure $4-14$. Frequency setting remains at 100.75 MHz .

EL5EB060
Figure 4-14. 100.75 MHz Bandpass Adjustment Setup \#3

NOTE
The following adjustment involves three interacting components. Due to this interaction the adjustment of each component should be repeated until maximum output is obtained.
(f) Adjust 1A4A3L20, then L36, and then L21 for maximum RF voltmeter indication.
(g) Remove isolation pad connected between L20 and ground. Remove jumper from between junction of 1A4A3Q8, R71 and ground.

NOTE

The following adjustment involves three interacting components Due to this interaction the adjustment of each component should be repeated until maximum output is obtained.
(h) Carefully readjust L20, L36 and L21 for maximum RF voltmeter indication.
(7) 81.25 MHz Bandpass Filter Adjustment (1A4A3)
(a) Jumper Junction of 1A4A3Q11 gate \# and R14 to CCA ground. Connect VTVM (AC) to 1A4A3-TP2. Using frequency counter, set signal generator to 81.25 MHz . Set signal generator output level to 250 mV . Connect signal generator as shown in Figure 4-15.

EL5EB061

Figure 4-15. 81.25 MHz Bandpass Filter Adjustment Setup \#1.
(b) Adjust 1A4A3L8 for maximum RF voltmeter indication.
(c) Connect signal generator as shown in figure $4-16$. Frequency setting remains at 81.25 MHz .

NOTE

The following adjustment involves two interacting components. Due to this interaction the adjustment of each component should be repeated until maximum output is obtained.
(d) Adjust 1A4A3L7 and then L8 for maximum VTVM indication.
(e) Remove isolation pad connected between L7 and ground. Remove jumper from between junction of 1A4A3Q11, R14 and ground.

EL5EB062
Figure 4-16. 81.25 MHz Bandpass Filter Adjustment Setup \#2
NOTE
The following adjustment involves two interacting components. Due to this interaction the adjustment of each component should be repeated until maximum output is obtained.
(f) Carefully readjust L7 and L8 for maximum VTVM indication. Minimum acceptable output is 40 mV .
(8) To adjust Output Level, connect oscilloscope to 1A4A3-15. Set front panel FREQUENCY switches to 29.9999 MHz. Adjust 1A4A3R54 for 600 mV peak-topeak.
(9) Remove card extender and reinstall Translator 1A4A3. Reinstall Synthesizer protective cover. Reinstall receiver-transmitter top cover. Remove dummy load.
d. VHF VCO CCA 1A4A 5Adjustment.
(1) Remove receiver-transmitter top cover. Remove Synthesizer protective cover Remove receiver transmitter bottom cover. Remove six front panel mounting screws. Lay front panel forward. Connect a 50 ohm dummy load to receiver-transmitter ANT jack. (See Fig 4-17 for adjustment points.) Remove VHF Divider CCA 1A4A4.
(2) Band "O" Adjustment
(a) Connect frequency counter to 1st Local Oscillator output 1A4A5J1 Inject + 1.95 VDC, from a bench power supply, at 1A4A5-4.
(b) Set front panel 10 MHz and 1 MHz frequency selectors to 0 . Adjust 1A4A5L1 for 91.75 ± 0.2 MHz.
(c) Set front panel 1 MHz frequency selector only, to 9 . Adjust 1A4A5C16 for $100.75 \pm 0.75 \mathrm{MHz}$.
(d) Repeat steps (b) and (c) above until both frequency adjustments are within tolerance simultaneously.
(3) Band "1" Adjustment
(a) Connect frequency counter to 1st Local Oscillator output 1A4A5J1. Inject +1.95 VDC, from a bench power supply, at 1A4A5-4.
(b) Set front panel 10 MHz frequency selector
to

Figure 4-17. VHF VCO CCA Adjustment Points

1. Set front panel 1 MHz frequency selector to 0 Adjust 1A4A5L4 for $101.75 \pm 0.2 \mathrm{MHz}$.
(c) Set front panel 1 MHz frequency selector only to 9 Adjust 1A4A5C27 for $110.75 \pm 0.75 \mathrm{MHz}$.
(d) Repeat step (b) and (c) above until both frequency adjustments are within tolerance simultaneously.
(4) Band "2" Adjustment
(a) Connect frequency counter to 1st Local Oscillator output 1A4A5J1. Inject + 1.95 VDC , from a bench power supply, at 1A4A5-4.
(b) Set front panel 10 MHz frequency selector to 2. Set front panel 1 MHz frequency selector to 0 . Adjust 1A4A5L7 for $111.75 \pm 0.2 \mathrm{MHz}$
(c) Set front panel 1 MHz frequency selector only, to 9 Adjust 1A4A5C38 for $120.75 \pm 0.75 \mathrm{MHz}$.
(d) Repeat steps (b) and (c) above until both frequency adjustments are within tolerance simultaneously.
(5) 1st Local Oscillator Output Level
(a) Connect VTVM (AC) (w/50 ohm termination) to 1st Local Oscillator output 1A4A5-J1.

Inject + 1.95 VDC, from a bench power supply, at 1A4A5-4. Connect a 47 ohm, $1 / 2$ or $1 / 4$ watt, resistor between 1A4A5-2 and ground.
(b) Set front panel 10 MHz frequency selector to 1 . Set front panel 1 MHz frequency selector to 6. Adjust 1A4A5L12 for approximately 225 mV RMS. Minimum acceptable output is 100 mV RMS.
(c) Record VTVM reading 1 MHz frequency selector set to 0 . Record RF voltmeter reading with 10 MHz frequency selector set to 2 and 1 MHz frequency selector set to 9 .
(d) Readjust 1A4A5L12 as necessary so the VTVM readings are within 3 dB of each other in steps (b) and (c) above.
(e) Remove 47 ohm resistor between 1A4A5-2 and ground.
(6) Remove dummy load. Reinstall VHF Divider CCA 1A4A4. Reinstall Synthesizer protective cover. Reinstall receiver-transmitter bottom cover. Reinstall receiver-transmitter top cover. Reinstall front panel.
e. VHF Mixer CCA 1A3AI Adjustments.
(1) Remove receiver-transmitter top cover Remove Receiver/Exciter protective cover. Place VHF Mixer CCA on card extender. Connect RF signal generator to ANT jack 1A8J1 Set RF signal generator to 16 MHz .
(2) Set front panel frequency switches to 16 MHz . Set mode switch to USB Adjust front panel RF GAIN control for an S9 reading on the ANTENNA COUPLER CONTROL S meter 1A2M1.
(3) Set RF signal generator level to 10 mV and adjust signal generator frequency until a tone is heard from the receiver speaker.
(4) Alternately adjust 1A3A1C41 and C44 for a maximum peak on S meter 1A2M1.
(5) Alternately adjust 1A3AIT7 and T8 for a maximum peak on S meter 1A2M1.
(6) Readjust 1A3A1T7 and 1A3A1C44 for maximum S meter, 1A2M1, peak.
(7) Remove card extender and install VHF Mixer CCA 1A3A1 Reinstall Receiver/Exciter protective cover. Reinstall receiver-transmitter top cover.
f. IF/Filter CCA 1A3A2Adjustment.
(1) Remove receiver-transmitter top cover Remove Receiver/Exciter protective cover. Place IF/Filter CCA on card extender Connect RF signal generator to ANT jack 1A8J1. Set RF signal generator to 16 MHz .
(2) Set front panel frequency switches to 16 MHz . Set mode switch to USB. Adjust front panel RF GAIN control for an S9 reading on the ANTENNA COUPLER CONTROL S meter 1A2M1.
(3) Set RF signal generator level to 10 mV and adjust signal generator frequency until a tone is heard from the receiver speaker.
(4) Alternately adjust 1A3A2L3 and L4 for a maximum peak on S meter 1A2M1.
(5) Remove card extender and reinstall IF/Filter CCA 1A3A2. Reinstall Receiver/Exciter protective cover. Reinstall receiver-transmitter top cover.
g. Sideband Generator CCA 1A3A3 Adjustment.
(1) Remove receiver-transmitter top cover Remove Receiver/Exciter protective cover. Place Sideband Generator CCA 1A3A3 on card extender. Connect a 50 ohm dummy load to ANT jack 1A8J1. Connect VTVM (AC) across the dummy load.
(2) Balanced Modulator Tuning.
(a) Rotate 1A3A3R34 fully counterclockwise. Then turn 1A3A3R34 approximately 8 turns clockwise Set front panel XMT GAIN fully counterclockwise. Set mode switch to USB.
(b) Using microphone, key transmitter and observe VTVM. With transmitter keyed, adjust 1A3A3T1 for maximum output reading on VTVM.
(c) Remove card extender and reinstall Sideband Generator CCA 1A3A3. Rotate XMIT GAIN control fully counterclockwise Set mode switch to USB.
(d) Alternately adjust 1A3A3R34 and 1A3A3C26 for minimum output reading on VTVM.
(3) ALC Adjustment Set front panel frequency switches to 16 MHz . Set mode switch to CW. Key transmitter and adjust 1A3A3R55 for 71 volts RMS output on VTVM.
(4) ACC Adjustment Set mode switch to AM. Adjust 1A3A3R18 for 42 volts RMS output on VTVM.
(5) Remove card extender and reinstall Sideband Generator CCA 1A3A3. Reinstall Receiver/Exciter protective cover. Reinstall receiver-transmitter top cover. Remove dummy load.
4-19. Antenna Coupler CU-2229/URC-92 Adjustments The following adjustments are not intended as a means of checkout or troubleshooting. If an adjustment cannot be performed, troubleshoot using conventional troubleshooting methods. Refer to List of Illustrations for required schematic figure numbers.
a. C MAX/C MIN Limit Switch Adjustments (Fig 4-18)
(1) Remove case from Antenna Coupler CU-2229/URC-92. Remove Phase and Amplitude Control CCA 2A2. Remove 2M1/2C1 drive belt (2).
(2) Connect multimeter between 2XA2-11 and chassis ground. Rotate capacitor shaft (3) counterclockwise (viewed from pulley end) until shaft just begins to leave capacitor end plate.

NOTE

Shaft will rotate more freely at the point where it begins to leave the capacitor end plate
Rotate shaft (3) clockwise (viewed from pulley end) two complete turns
(3) Adjust C MAX plunger (1) to activate C MAX $2 S 4$ (meter indicates short) at this shaft position.
(4) Connect multimeter between 2XA2-8 and chassis ground. Rotate shaft (3) clockwise (viewed from pulley end) 15 complete turns.
(5) Adjust C MIN plunger (4) to activate C MIN 2S3 (meter indicates short) at this shaft position.
(6) Disconnect multimeter and reinstall $2 \mathrm{M} 1 / 2 \mathrm{C} 1$ drive belt. Reinstall Phase and Amplitude Control CCA 2A2. Reinstall antenna coupler in case.
b. LMAX and L MIN Limit Switch Adjustments. (Fig 4-19)
(1) Remove case from Antenna Coupler CU-2229/URC-92.
(2) Connect multimeter between L MAX plunger.
(3) and chassis ground Rotate inductor to move roller (2) in contact with L MAX plunger. Stop when roller/plunger contact causes meter to indicate a short.
(3) Check the distance from the roller to the end

TM 11-5820-873-34

Figure 4-18. CMAX/C MIN Adjustment Locator
of the coil wire. It should be between $1 / 4$ and $\mathrm{S} / 4 \mathrm{inch}$. If not, move roller (2) away from plunger and adjust plunger length as necessary. Repeat steps 2 and 3 until adjustment is within tolerance.
(4) Connect multimeter between L MIN plunger (1) and chassis ground. Rotate inductor to move roller (2) in contact with L MIN plunger. Stop when roller/plunger contact causes meter to indicate a short.
(5) Check the distance from the roller to the end of the coil wire. It should be between 1 / and /4 inch. If not, move roller (2) away from plunger and adjust plunger length as necessary. Repeat steps 4 and 5 until adjustment is within tolerance. Reinstall antenna coupler in case.
c. Amplitude Detector Adjustment \lfloor (Fig 4-20)
(1) Remove case from Antenna Coupler CU2229/URC-92. Connect RF and control cables between the Antenna Coupler and Receiver/Transmitter RT-1277/URC-92. Ensure the receiver/transmitter is correctly powered and grounded.
(2) Loosen fasteners and swing Phase and Amplitude Control CCA away from chassis. Disconnect and isolate RF line from terminal post (1). Connect clip leads of a BNC/clip lead cable (fig 4-1) to terminal post (1) and ground post (2) Connect a 50 ohm dummy load to BNC/clip lead cable.

NOTE

Cable clip leads should not exceed 1 inch in length. Overall cable length should not exceed 6 inches.

Figure 4-19 LMAX/L MIN Adjustment Locator

NOTE

Ensure VTVM is isolated from ground at the power cord.
(3) Connect VTVM DC between 2A4C20 (5) and 2A4C21 (3). Set mode switch to AM. Set frequency to 1.6 MHz . Key microphone.
(4) Adjust 2A4C1 (4) for a VTVM null indication of 0 VDC +0.005 VDC.
(5) Unkey microphone. Set mode switch to OFF.

Remove meter and cable.
(6) Swing Phase and Amplitude Control CCA into place and secure fasteners. Reconnect RF line to terminal post (1). Reinstall antenna coupler in case.
d. Phase Detector Adjustment. (Fiq 4-21)
(1) Remove case from Antenna Coupler CU2229/URC-92. Connect RF and control cables between the antenna coupler and Receiver/Transmitter RT-1277/URC-92. Ensure the receiver/transmitter is correctly powered and grounded.
(2) Loosen fasteners and swing Phase and Amplitude Control CCA away from chassis. Disconnect and isolate RF line from terminal post (1). Connect clip leads of a BNC/clip lead cable to terminal post (1) and ground post (2). Connect a 50 ohm dummy load to BNC/clip lead cable.

NOTE

Cable clip leads should not exceed $1 / 2$ inch in length. Overall cable length should not exceed 6 inches.

Ensure VTVM is isolated from ground at the power cord.
(3) Connect VTVM DC between 2A4C17 (4) and 2A4C19 (5). Set mode switch to AM. Set frequency to 1.6 MHz . Key microphone.
(4) Adjust 2A4R5 (3) for a VTVM null indication of O VDC $\pm 0.1 \mathrm{VDC}$.

NOTE

When adjusting the phase detector output, it may not be possible to
adjust a 0 VDC null at both 16 MHz and 29.9 MHz . If not, 2A4R5 should be adjusted for a negative at 1.6 MHz equal to the positive at 29.9 MHz . Neither signal should exceed the 0.1 VDC tolerance from 0 VDC.
(5) Set frequency to 29.9 MHz . Adjust 2A4R5 (3) for a VTVM null indication of 0 VDC +0.1 VDC.
(6) Set frequency to 1.6 MHz and recheck VTVM null indication. If not within tolerance, readjust 2A4R5 as indicated in NOTE above.
(7) Unkey microphone. Set mode switch to OFF.

Remove meter and cable.
(8) Swing Phase and Amplitude Control CCA into place and secure fasteners. Reconnect RF line to terminal post (1). Reinstall antenna coupler in case.

4-20. Antenna Coupler Lubrication

Approximately every twelve months (6 months in salty atmospheres) the antenna coupler should be lubricated as follows. Remove the case from Antenna Coupler CU-2229/URC-92. Apply a small amount of type G molybdenum grease to the roller bar. Also apply the molybdenum grease on the end bearings or roller inductor 2L4. Operate 2 L 4 thru its full range several times to evenly distribute the grease. Lubricate the threaded shaft or variable capacitor 2C1 with molybdenum grease or a light weight petroleum base grease. Reinstall case on antenna coupler.

4-21. Conversion Requirements for 13/26 VDC Operation

Refer to Operator and Organizational Maintenance Manual, TM 11-5820-873-12.
4-22. Conversion Requirements for 115, 230/132, 264 VAC Operation
Refer to Operator and Organizational Maintenance Manual, TM 11-5820-873-12.

Section V. ADMINISTRATIVE STORAGE

4-23. Prepare the AN/URC-92 for administrative storage in accordance with the following
a. Perform the Preventive Maintenance Checks and Services outlined in Chapter 4.
b. Perform the Preventive Maintenance Checks and Services outlined in this chapter.
c. Place all loose components in a plastic bag and secure the bag to one of the handles on the RT1277/URC-92.
d. The RT-1277/URC-92 and the CU2229/URC-92 are completely sealed and do not require any special storage precautions. The units may be stored in temperatures ranging from 55 to $85^{\circ} \mathrm{C}$ at humidities up to 100% without damage.

Figure 4-20. Connection and Adjustment Points - Amplitude Detector Adjustment

Figure 4-21 Connection and Adjustment Points - Phase Detector Adjustment

4-22 Back-Panel-Exploded View

TM 11-5820-873-34

phefid all aeference
OESIGMATIONS WITH IAAA?

PREFIX ALL REFERENCE
DESIGNATIONS WITH 1AJAI

TM 11-5820-873-34

PREFIX ALL REFERENCE
DESIGNATIONS WITH IA3A4
LEGEND

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \text { ITEM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \text { ITEM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	ITEM NO	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	ITEM NO	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	ITEM NO	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$
C1	1	C17	2	C33	6	C50	8	R1	12	R18	27	R35	25	R53	39
C2	2	C18	4	C34	2	CR1	9	R2	13	R19	28	R36	37	R54	29
C3	2	C19	2	C35	7	CR2	9	R3	14	R20	29	R37	13	R55	17
C4	2	C20	3	C36	6	CR3	9	R4	15	R2;	30	R38	19	R56	43
C5	2	C21	2	C37	1	CR4	9	R5	16	R22	31	R39	31	R57	39
C6	2	C22	2	C38	4	Q1	10	R6	17	R23	24	R40	37	R58	44
C7	2	C23	2	C39	3	Q2	10	R7	18	R24	15	R41	13	R59	24
C8	2	C24	2	C40	2	Q3	10	R8	19	R25	17	R42	20	R60	45
C9	2	C75	2	C41	2	Q4	10	R9	16	R26	32	R43	32	R61	29
C10	3	C26	2	C42	2	Q5	11	R10	20	R27	14	R44	38	R62	15
C11	4	C27	6	C43	2	Q6	10	R11	21	R28	33	R45	39	R63	40
C12	5	C28	6	C44	2	Q7	10	R12	22	R29	19	R46	27	R64	28
C13	2	C29	2	C45	2	Q8	10	R13	23	R30	34	R47	40	R65	39
C14	3	C30	6	C46	2	Q9	10	R14	24	R31	35	R48	41	R66	46
C15	2	C31	7	C47	2	Q10	10	R15	18	R32	20	R49	33	T1	47
C16	2	C. 32	2	C48	2	Q11	10	R16	25	R33	36	R50	27	T2	48
				C49	2	Q12	10	R17	26	R34	20	R51	15	TP1	49
												R52	42	U1	50

EL \angle R027
4-33 Power Supply-Exploded View

4-34 Power Supply Chassis-Exploded View

PREFIX ALL REFERENCE
DESIGNATIONS WITH IA6A1
LEGEND

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	ITEM NO	REF DES	ITEM NO	REF DES	ITEM NO	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	ITEM NO	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	ITEM NO
C2	1	C14	6	CR5	13	R1	21	R12	30
C3	2	C15	7	CR6	13	R2	22	R13	23
C4	1	C16	8	CR7	14	R3	23	R14	25
C6	3	C17	8	CR8	15	R4	24	R15	24
C7	2	C18	9	F2	16	R5	23	R16	24
C8	4	C19	9	F3	16	R6	25	R18	31
C10	5	CR1	10	Q2	17	R7	26	R19	24
C11	3	CR2	10	Q3	18	R8	27	U1	32
C12	4	CR3	11	Q4	18	R9	24	U2	33
C13	2	CR4	12	Q5	19	R10	28	U3	32
				Q6	20	R11	29	U4	33

PREFIX ALL REFERENCE DESIGNATIONS WITH 1A4A6

4-36 Synthesizer Mother Board

PREFIX ALL REFERENCE DESIONATIONS WITH 1A1A5

LEGEND

REF DES	ITEM NO								
C1	1	C11	3	CR5	7	L1	11	R2	15
C3	2	C12	3	CR6	7	L2	11	R3	16
C4	3	C13	3	CR7	7	L4	11	R4	17
C5	3	C14	3	CR8	7	L5	12	R5	15
C6	3	C15	6	CR9	9	L6	11	R6	18
C7	4	CR1	7	J1	10	L7	11	R7	19
C8	5	CR2	7	22	10	Q1	13	R8	20
C9	4	CR3	7	J3	10	Q2	13	R9	21
C10	3	CR4	8	J4	10	R1	14		

EL4ZR019
4-37 Receiver/Exciter Mother Board

PREFIX ALL REFERENCE DESIGNATIONS WITH 1A6A2

4-38 DC Inverter-Exploded View

PREFIX ALL REFERENCE
DESIGNATIDNSWITH 1A6A2 LEGEND

REF	ITEM	REF	ITEM	REF	ITEM	REF	ITEM
DES	NO	DES	NO	DES	NO	DES	NO
C1	1	CR3	6	R5	11	E3	
C2	2	Q1	Q2	7	R6	11	E4
C3	3	R1	8	R7	12	E5	16
C4	3	R2	8	R8	13	E6	16
C5	4	R3	9	E1	14	E7	16
CR1	5	R4	10	E2	15	E8	16
CR2	5			16	K1	17	

PREFIX ALL REFERENCE

4-41 Main Harness

PREFIX ALL REFERENCE
DESIGNATIONS WITH 1ASA1

LEGEND

REF	ITEM	REF	ITEM	REF	ITEM	REF DES	NO

4-42 Odd Channel Filter (CCA)

PREFIX ALL REFERENCE DESIGNATORS WITH 1ASA2

LEGEND

$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \mathrm{NO} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \mathrm{NO} \\ & \hline \end{aligned}$
C1	1	C8	5	C15	2	L2	17
C2	2	C9	8	C16	12	L3	18
C3	3	C10	9	C17	13	L4	19
C4	4	C11	2	C18	14	L5	20
C5	5	C12	10	C19	12	L6	21
C6	6	C13	9	C20	15	L7	22
C7	7	C14	11	L1	16	L8	23
						R1	24
						S1	25
						S2	26

PREFIX ALL REFERENCE
DESIGNATIONS WITH 1A1A3

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$
C1	1	C8	7	C15	7	C22	16	C29	21	C36	20	L3	30	L10	37
C2	2	C9	8	C16	7	C23	17	C30	22	C37	26	L4	31	L11	38
C3	3	C10	9	C17	13	C24	18	C31	17	C38	27	L5	32	L12	39
C4	4	C11	10	C18	14	C25	14	C32	23	C39	28	L6	33	L13	39
C5	5	C12	5	C19	2	C26	19	C33	24	C40	24	L7	34	L14	40
C6	5	C13	11	C20	15	C27	11	C34	10	L1	29	L8	35	L15	41
C7	6	C14	12	C21	11	C28	20	C35	25	L2	30	L9	36	L16	42
														R1	43
														S1	44

4-44 Receiver Filter (CCA)

4-45 Motor Control Board Assembly

4-72

PREFIX ALL REFERENCE
DESIGNATIONS WITH 1A5A4
LEGEND

REF DES	ITEM NO								
C1	1	C24	3	CR12	11	R3	20	R27	27
C2	2	C25	7	CR16	12	R4	21	R28	28
C3	2	C27	8	CR17	11	R5	22	R29	29
C4	1	C28	9	L1	13	R6	19	K1	30
C5	1	CR1	10	L2	14	R9	23	K2	30
C6	1	CR2	10	L4	15	R20	24	J1	31
C13	3	CR3	10	Q2	16	R23	19	J2	32
C21	4	CR4	10	Q3	17	R24	25	J3	33
C22	5	CR5	11	R1	18	R25	21	J4	32
C23	6	CR6	11	R2	19	R26	26	B1	34
							T1	35	

EL4ZR023

PREFIX ALL REFERENCE DESIGNATORS WITH 1A1

4-47 Front Panel Assembly (2 of 3)

4-47 Front Panel Assembly (3 of 3)

EL4ZR042

PREFIX ALL REFERENCE DESIGNATORS WITH 1A8

4-48 Main Harness-Front Panel A Transmit B Receive Relay

PREFIX ALL REFERENCE
DESIGNATORS WITH 1A1A1

4-49 Speaker Driver(CCA)

PREFIX ALL REFERENCE

DESIGNATORS WITH 1A1A2 LEGEND

REF DES	ITEM NO	REF DES	ITEM NO	REF DES	ITEM NO
R1	1	C1	3	Q2	8
R2	1	C2	4	U1	9
R3	1	C3	3	U.2	9
R4	1	C4	5	U3	10
R5	1	C5	6	U4	11
R6	1	C6	6	U5	11
R7	2	CR1	7	U6	11
R8	1	CR2	7	U7	11
R9	1	CR3	7	U8	11
R10	1	CR4	7	U9	11
R11	1	Q1	8	J1	12
				P2	13

4-50 Decoder(CCA)

PREFIX ALL REFERENCE
DESIGNATORS BELOW WITH 1A1A3

REF	ITEM DES	REF NO	ITEM NE	REF DES	ITEM NO	REF DES	ITEM NO	REF DES	ITEM * NO
U1	3	R5	13	R15	13	R25	13	R35	13
U2	3	R6	13	R16	13	R26	13	R36	13
U3	3	R7	13	R17	13	R27	13	R37	13
U4	3	R8	13	R18	13	R28	13	R38	13
U5	3	R9	13	R19	13	R29	13	R39	13
U6	3	R10	13	R20	13	R30	13	R40	13
R1	13	R11	13	R21	13	R31	13	R41	13
R2	13	R12	13	R22	13	R32	13	R42	13
R3	13	R13	13	R23	13	R33	13	R43	13
R4	13	R14	13	R24	13	R34	13	C1	14
								C2	14

4-81

4-54 Coupler Unit CU-2229/URC View C

4-84

4-56 K2-K3 Relay Assembly

4-85

PREFIX ALL REFERENCE

DESIGNATORSWITH 2A1

LEGEND

$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \\ & \text {, NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$	ITEN
C1	1	C16	1	C31	7	C46	1	CR16	9	R5	17	R21	17	R37	17	R53	23	Q10	37
C2	1	C17	1	C32	8	C47	4	CR17	9	R6	18	R22	17	R38	29	R54	35	Q11	37
C3	1	C18	1	C33	8	CR1	9	CR18	9	R7	19	R23	19	R39	29	R55	19	Q12	37
C4	1	C19	1	C34	8	CR2	10	CR19	11	R8	19	R24	28	R40	17	R56	28	Q13	39
C5	1	C20	1	C35	3	CR3	11	CR20	9	R9	20	R25	16	R41	14	R57	17	Q14	37
C6	1	C21	1	C36	8	CR4	11	CR21	9	R10	21	R26	17	R42	17	R58	19	Q15	38
C7	1	C22	1	C37	2	CR5	11	CR22	9	R11	22	R27	17	R43	30	R59	19	Q16	37
C8	1	C23	2	C38	3	CR7	9	CR23	9	R12	19	R28	17	R44	28	Q1	36	Q17	40
C9	1	C24	1	C39	8	CR8	12	CR24	9	R13	23	R29	19	R45	19	Q2	37	Q18	38
C10	1	C25	3	C40	8	CR9	9	CR25	9	R14	23	R30	29	R46	31	Q3	38	Q19	39
C11	1	C26	3	C41	1	CR10	11	CR26	12	R15	24	R31	19	R47	32	Q4	37	U1	41
C12	1	C27	4	C42	8	CR12	11	CR27	9	R16	25	R32	29	R48	33	Q5	37	U2	42
C13	1	C28	2	C 43	3	CR13	13	R1	14	R17	25	R33	29	R49	34	Q6	37	U3	42
C14	1	C29	5	C44	1	CR14	9	R2	14	R18	17	R34	29	R50	25	Q7	37	U4	42
C15	1	C30	6	C45	1	CR15	9	R3	15	R19	26	R35	29	R51	26	Q8	39	U5	42
								R4	16	R20	27	R36	29	CR52	27	09	37	U6	42

4-57 Control Logic (CCA)

PREFIX ALL REFERENCE DESIGNATORS WITH 2A2

LEGEND

$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \hline \text { ITEM } \\ \text { NO } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \hline \text { ITEM } \\ \text { NO } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \hline \text { ITEM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \hline \text { ITEM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \hline \text { ITEM } \\ & \text { NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \hline \text { ITEM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \hline \text { ITEM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \hline \text { ITEM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \hline \text { ITEM } \\ \text { NO } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{gathered} \hline \text { ITEM } \\ \text { NO } \\ \hline \end{gathered}$
C1	1	C16	1	C30	5	CR11	8	CR26	6	RII	17	R25	20	R40	26	R55	10	Q6	30
C2	1	C17	2	C31	1	CR12	8	CR27	6	R12	16	R26	24	R41	9	R56	22	Q7	30
C3	1	C18	1	C32	1	CR14	6	CR30	7	R13	18	R28	24	R42	9	R57	22	Q8	30
C4	1	C19	1	C33	1	CR15	6	CR31	7	R14	19	R29	10	R43	10	R58	23	Q9	30
C5	1	C20	1	CR1	6	CR16	6	R1	9	R15	11	R30	10	R44	11	R59	20	010	30
C6	1	C21	2	CR2	6	CR17	6	R2	9	R16	20	R31	21	R45	27	R60	20	011	31
C7	1	C22	3	CR3	7	CR18	7	R3	10	R17	21	R32	21	R46	13	R61	28	012	31
C8	1	C23	2	CR4	6	CR19	7	R4	11	R18	21	R33	21	R47	17	R63	24	013	30
C9	1	C24	4	CR5	6	CR20	6	R5	12	R19	10	R34	21	R48	16	R64	24	014	30
C10	1	C25	5	CR6	6	CP21	6	R6	13	R20	10	R35	25	R49	16	R70	29	015	32
CII	1	C26	1	CR7	6	CR22	6	R7	14	R21	22	R36	26	R50	14	Q1	30	U1	33
C12	1	C27	3	CR8	6	CR23	6	R8	15	R22	22	R37	17	R51	16	02	31	U2	34
C13	1	C28	2	CR9	7	CR24	8	R9	16	R23	23	R38	25	R52	18	03	31	UJ3	33
C15	1	C29	4	CR10	6	CR25	6	R10	16	R24	20	R39	17	R53	20	04	32	U4	34
														R54	15	Q5	32	U5	34

EL4ZR049

4-58 Phase and Amplitude Control (CCA)

PREFIX ALL REFERENCE
DESIGNATIONS WITH 2A3

4-59 Regulator(CCA)

PREFIX ALL REFERENCE DESIGNATORS WITH 2A4

4-60 Phase and Amplitude Assembly

PREFIX ALL REFERENCE DESIGNATORS WITH 2A4

LEGEND

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$
C1	1	C10	4	L1	8	R1	12
C2	2	C11	5	L2	9	R2	13
C3	3	C22	6	L3	10	R3	13
C4	3	CR1	7	L4	11	R4	14
C6	3	CR2	7	L5	11	R5	15
C7	3	CR3	7	L6	11	R6	14
C8	3	CR4	7	L7	11	T1	16
C9	3	CR5	7	L8	11	T2	17

4-61 Phase and Amplitude (CCA)

PREFIX ALL REFERENCE DESIGNATIONS WITH 2A5

4-62 Relay Control Assembly

PREFIX ALL REFERENCE
DESIGNATORS WITH 2A6 LEGEND

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$
C1	1	CR8	2	R5	7	R14	6
C2	1	CR9	2	R6	6	R15	7
CR1	2	CR10	2	R7	5	R16	5
CR2	2	CR11	2	R8	4	R17	4
CR3	2	CR12	2	R9	3	R18	3
CR4	2	R1	3	R10	3		
CR5	2	R2	4	R11	4		
CR6	2	R3	5	R12	5		
CR7	2	R4	6	R13	6		

EL4ZR057
4-63 Servo Control (CCA)

PREFIX ALL REFERENCE
DESIGNATORS WITH 2A3A

EL4ZR058

4-64 PCB Filter (CCA)

4-94

4-66 Electrical Equipment Mounting Base MT- 4982URC-92

APPENDIX A

REFERENCES

DA Pam 310-4
DA Pam 310-7
SB 700-20
TB SIG 291

TB 43-0118
TB 38-750
TM 750-244-2

Index of Technical Manuals, Technical Bulletins, Supply Manuals (Types 7, 8, and 9), Supply Bulletins, and Lubrication Orders.
US Army Equipment Index of Modification Work Orders.
Army Adopted/Other Items Selected for Authorization/List of Reportable Items.
Safety Measures to Be Observed When Installing and Using Whip Antennas, Field Type Masts, Towers, Antennas, and Metal Poles That Are Used with Communication, Radar, and Direction Finder Equipment.
Field Instructions for Painting and Preserving Electronics Command Equipment Including Camouflage Pattern Painting of Electrical Equipment Shelters
The Army Maintenance Management System.
Procedures for Destruction of Electronics Materiel to Prevent Enemy Use (Electronics Command).

INDEX

Subject

Paragraph
Figure, Table, Number
Adjustments, Antenna Coupler CU-2229/URC-92
Amplitude Detector Adjustment.. 4-19c
C MAXIC MIN Limit Switch Adjustment .. 4-19a
L MAX and L MIN Limit Switch Adjustment ... 4-19b
Phase Detector Adjustment. .. 4-19d
Adjustments, Receiver-Transmitter RT-1277/URC-92
IF/Filter CCA 1A3A2
4-18f
Low Digit Generator 1A4A2 ... 4-18b
Sideband Generator 1A3A3.. 4-18g
Spectrum Generator 1A4A1 .. 4-18a
Translator 1A4A3
4-18c
VHF Mixer CCA 1A3A1 .. 4 4-18e
VHF VCO CCA 1A4A5 ... 4-18d
Administrative Storage... 1-5
Amplitude Detector Adjustment... 4-19c
Antenna Coupler CU-22291URC-92 Adjustments
Amplitude Detector Adjustment... 4 4-19c
C MAXIC MIN Limit Switch Adjustment... 4-19a
L MAX and L MIN Limit Switch Adjustment. ... 4-19b

Antenna Coupler CU-2229/URC-92 Direct Support Checkout/Troubleshoot....................................... 3-6
Antenna Coupler CU-22291URC-92 Functional Operation
C3 and C6 Control Assembly 2A5 Detailed Functional Operation.. 2-19
Control Logic Board 2A1 Detailed Functional Operation... 2-14
Detailed Theory of Operation ... 2-13
Filter Board 2A3A Detailed Functional Operation ... 2-17
Phase and Amplitude Control Board 2A2 Detailed Functional Operation................................. 2-15
Phase and Amplitude Detector 2A4 Detailed Functional Operation ... 2-18
Regulator Board 2A3 Detailed Functional Operation .. 2-16
Servo Motor Control 2A6 Detailed Functional Operation ... 2-20
Simplified Overall Operation ... 2-12
3 dB Attenuator Detailed Functional Operation... 2-21
Antenna Coupler CU-2229/URC-92, General Support Checkout/Troubleshoot 4-6
Antenna Coupler Lubrication .. 4-20
Antenna Coupler Control 1 A2 Detailed Functional Operation .. 2-11
Antenna Coupler Control
Removal .. 3-12a
Replacement... 3-12b
Audio CCA
Removal .. 3-10a
Replacement .. 3-10b
C MAXIC MIN Limit Switch Adjustment .. 4-19a
Calibration ... 1-6
Checkout/Troubleshoot
Direct Support, Antenna Coupler CU-22291URC-92, Checkout/Troubleshoot 3-8
Direct Support, Receiver-Transmitter RT-1277/URC-92, Checkout/Troubleshoot 3-5
Checkout/Troubleshoot
General Support, Antenna Coupler CU-2229/URC-92, Checkout/Troubleshoot 4-6
General Support, Receiver-Transmitter RT-12771URC-92, Checkout/Troubleshoot................... 4-5
Conversion Requirements for 13/26 VDC Operation ... 4-21
Conversion Requirements for 115,2301132,284 VAC Operation .. 4-22
Data
Tabulated Data ... 1-9
Decoder CCA
Removal .. 4-16a
Replacement.. 4-16b
Description of Radio Set .. 1-8
Destruction of Army Materiel ... 1-4
Discrepancy in Shipment Report (DISREP) (SF361) .. 1-2c
Paragraph Figure, Table, Number
Display CCA
Removal 4-15a
Subject
Replacement 4-15b
Even Channel Filter Assembly
Removal 4-14a
Replacement 4-14b
Filter Module 1A5 Detailed Functional Operation 2-10
Filter Module
Removal 4-13a
Replacement 4-13b
Forms and Records
Discrepancy in Shipment Report (DISREP) (SF361) 1-2c
Reports of Maintenance and Unsatisfactory Equipment 1-2a
Reports of Packaging and Handling Deficiencies 1-2b
IF Filter CCA 1A3A2, Adjustments 4-18f
IF Filter CCA
Removal 3-10a
Replacement 3-10b
Key Line Circuit 2-22
L MAX and L MIN Limit Switch Adjustment 4-19b
Low Digit Generator, Adjustments 4-18b
Low Digit Generator CCA Removal 3-8a
Replacement 3-8b
Lubrication, Antenna Coupler 4-20
Motor Control Board
Removal 4-14a
Replacement 4-14b
Nonconventional Circuits
Key Line 2-22
Odd Channel Filter Assembly
Removal 4-14a
Replacement 4-14b
Operation, Detailed Functional, Antenna Coupler Control Unit 1A2 2-11
Operation, Functional, Antenna Coupler CU-2229/URC-92
C3 and C6 Control Assembly 2A5 Detailed Functional Operation 2-19
Control Logic Board 2A1 Detailed Functional Operation 2-14
Detailed Theory of Operation 2-13
Filter Board 2A3A Detailed Functional Operation 2-17
Phase and Amplitude Control Board 2A2 Detailed Functional Operation 2-15
Phase and Amplitude Detectors 2A4 Detailed Functional Operation 2-18
Regulator Board 2A3 Detailed Functional Operation 2-16
Servo Motor Control 2A6 Detailed Functional Operation 2-20
Simplified Overall Operation 2-12
3 dB Attenuator Detailed Functional Operation 2-21
Operation, Functional, Radio Receiver-Transmitter RT- 1277/URC-92 CPLR TUNE KW Functional Operation 2-6
Filter Module 1A5 Detailed Functional Operation 2-10
Power Supply 1A6 Functional Operation 2-7
Receiver Functional Operation 2-4
Simplified Overall Operation 2-3
Transmitter Functional Operation 2-5
Operation, Simplified Functional, Synthesizer 1A4 2-8
Low Digit Generator 1A4A2 2-8b
Spectrum Generator 1A4A1 2-8a
Translator 1A4A3 2-8c
VCO 1A4A5 2-8e
VHF Divider 1A4A4 2-8d
Operation, Detailed Functional, Synthesizer 1A4 2-9
Paragraph

Subject
Low Digit Generator 1A4A2
Spectrum Generator 1A4A1
Translator 1A4A3

VCO 1A4A5

VHF Divider 1A4A4 Figure, Table, Number
2-9b
2-9a
2-9c
2-9e
2-9d
Operation, Conversion Requirements for 13/26 VDC Operation... 4-21
Operation, Conversion Requirements for 115,230/132,264 VAC Operation
4-22
RF Power Amplifier Assy
Removal .. 3-11a
Replacemer .. 3-11b
Radio Receiver-Transmitter RT-1277/URC-92 Functional Operation
CPLR TUNE KW Functional Operation
2-6
Filter Module 1A5 Detailed Functional Operation ... 2-10
Power Supply 1A6 Functional Operation... 2-7
Receiver Functional Operation... 2-4
Simplified Overall Operation ... 2-3
Synthesizer 1A4 Detailed Functional Operation.. 2-9
Low Digit Generator 1A4A2.. 2-9h
Spectrum Generator 1A4A1 ... 2-9a
Translator 1A4A3 .. 2-9e
VCO 1A4A5 ... 2-9e
VHF Divider 1A4A4... 2-8d
Synthesizer 1A4 Simplified Functional Operation... 2-8
Low Digit Generator 1A4A2... 2-8b
Spectrum Generator 1A4A1 .. 2-8a
Translator 1A4A3 .. 2-8c
VCO 1A4A5 ... 2-8e
VHF Divider 1A4A4... 2-8d
Transmitter Functional Operation... 2-5
Receiver/Exciter Mother Board
Removal
4-11a
Replacement... 4-11b
Receiver Filter Assembly
Removal .. 4-14a
Replacement.. 4-14b
Receiver-Transmitter RT-1277/URC-92 Adjustments
IF/Filter CCA 1A3A2
4-18f
Low Digit Generator 1A4A2... 4-18b
Sideband Generator CCA 1A3A3 .. $4-18 \mathrm{~g}$
Spectrum Generator 1 A4A 1 .. 4-18a
Translator 1A4A3
4-18c
VHF Mixer CCA 1A3A1 .. 4 4-18e
VHF VCO CCA 1A4A5... 4-18d
Receiver-Transmitter RT-1277/URC-92, Checkout/Troubleshoot... 3-5
Receiver-Transmitter RT-12771URC-92, General Support Checkout/Troubleshoot.............................. 4-5
Regulator Assembly
Removal ... 4-10a
Replacement... 4-10b
Removal, Antenna Coupler Control ... 3-12a
Removal, Audio CCA .. 3-10a
Removal, Decoder CCA... 4-16a
Removal, Display CCA.. 4-15a
Removal, Even Channel Filter Assembly ... 4-14a
Removal, Filter Module ... 4-13a
Removal, IF Filter CCA.. 3-10a
Removal, Low Digit Generator CCA .. 3-8a
Removal, Motor Control Board... 4-14a
Removal, Odd Channel Filter Assembly.. 4-14a
Removal, Power Supply 1A6.. 4-8a
Removal, Power Transformer 1A6T1 ... 4-9a
Removal, RF Power Amplifier Assy.. 3-11a
Removal, Receiver/Exciter Mother Board .. 4-11a
Removal, Receiver Filter Assembly ... 4-14a

Subject

Removal, Regulator Assembly 4-10aNumber
Removal, Sideband Generator CCA
Removal. Speaker Driver 3-10a 3-10a
Removal, Spectrum Generator CCA 4-17a 3-8a
Removal, Synthesizer Mother Board
Removal, Translator CCA 3-8a
Removal, VHF Divider CCA 3-8a
Removal, VHF Mixer CCA 3-10a
Removal, VHF VCO CCA 3-9a
Replacement, Antenna Coupler Control 3-12b
Replacement, Audio CCA 3-10b
Replacement, Decoder CCA 4-16b
Replacement, Display CCA 4-15b
Replacement, Even Channel Filter Assembly 4-14b
Replacement, Filter Module 4-13b
Replacement, IF Filter CCA 3-10b
Replacement, Low Digit Generator CCA 3-8b
Replacement, Motor Control Board $4-14 b$
Replacement, Odd Channel Filter Assembly 4-14b
Replacement, Power Supply 1A6 $4-8 b$
Replacement, Power Transformer IA6T1 4-9b
Replacement, RF Power Amplifier Assy 3-11b
Replacement, Receiver/Exciter Mother Board 4-11b
Replacement, Receiver Filter Assembly 4-14b
Replacement, Regulator Assembly 4-10b
Replacement, Sideband Generator CCA 3-10b
Replacement, Speaker Driver. 4-17b
Replacement, Spectrum Generator CCA 3-8b
Replacement, Synthesizer Mother Board $4-12 b$
Replacement, Translator CCA. 3-8b
Replacement, VHF Divider CCA 3-8b
Replacement, VHF Mixer CCA 3-10b
Replacement, VHF VCO CCA 3-9b
Report of Packaging and Handling Deficiencies $1-2 b$
Reporting Equipment Improvement Recommendations (EIR) 1-7
Reports of Maintenance and Unsatisfactory Equipment 1-2a
Sideband Generator CCA1A3A3, Adjustments 4-18g
Sideband Generator CCA
Removal 3-10a
Replacement $3-10 b$
Speaker Driver
Removal 4-17a
Replacement 4-17b
Spectrum Generator IA4AA1 Adjustments 4-18a
Spectrum Generator CCA
Removal 3-8a
Replacement 3-8b
Synthesizer Mother Board
Removal 4-12a
Replacement 4-12b
Tabulated Data 1-9
Test Equipment (Direct Support) 3-3
Test Equipment (General Support) 4-3
Translator 1A4A3, Adjustments 4-18c
Translator CCA
Removal 3-8a
Replacement 3-8b
Voltage Measurements (Direct Support) 3-2
Voltage Measurements (General Support) 4-2
VHF Divider CCA
Removal 3-8a
Replacement $3-8 b$ParagraphFigure, Table,

Paragraph
Figure, Table, Number

VHF Mixer CCA 1A3A1, Adjustments.
$4-18 e$
VHF Mixer CCA
Removal .
Replacement.
VHF VCO CCA, Adjustments
3-10a
3-10b
VHFVCOCCA
Removal.
4-18d
3-9a
Replacement
$3-9 b$
Warranty

INDEX-5

it U.S. GOVERNMENT PRINTING OFFICE : 1992 0-311-831 (44217)

FO-1 Receiver Block Diagram

FO-2 Transmitter Block Diagram

FO-7 Phase \& Amplitude Control Block Diagram

FO-8 Keyline Simplified Diagram

FO-9 Main Frame Wiring

FO-11. Decoder and Display Schematic

FO-16. Sideband Generator Schematic

FO-20 Translator Schematic

FO-23. Synthesizer Mother Board Schematic.

FO-24. Filter Module Block Diagram

FO-25. Odd Channel Filter Schematic.

FO-26. Even Channel Filter Schematic.

FO-30 DC Inverter Schematic

FO-32 CU 2229 Chassis Wiring Schematic Diagram

FO-34 Phase and Amplitude Control Schematic Diagram

By Order of the Secretary of the Army:

Official:
E. C. MEYER

General, United States Army
J C PENNINGTON
Major General, United States Army
The Adjutant General

DISTRIBUTION:
Active Army
HISA(Ft Monmouth)(21)
USAINSCOM (2)
COE(1)
TSG (1)
USAARENBD (1)
DARCOM (1)
TRADOC (2)
OS Maj Comd (4)
TECOM (2)
USACC (4)
MDW (1)
Armies (2)
Corps (2)
Svc Colleges (1)
USASIGS (5)
USAADS (2)
USAFAS (2)
USAARMS (2)
USAIS (2)
USAES (2)
USAICS (3)
MAAG (1)
USARMIS (1)
USAERDAA (1)
USAERDAW (1)
Ft Carson (5)
Ft Gordon (10)
Ft Gillem (10)
Ft Richardson (CERCOM Ofc) (2)
Army Dep(1)except
LBAD(14)
SAAD (30)
TOAD(14)
SHAD (3)
USA Dep (1)
Sig Sec USA Dep (1)
Units org under fol TOE (2)
29-207
29-610
NG: None
USAR: None
For explanation of abbreviations see, AR 310-50

The Metric System and Equivalents

Linear Measure

1 centimeter $=10$ millimeters $=.39$ inch
1 decimeter $=10$ centimeters $=3.94$ inches
1 meter $=10$ decimeters $=39.37$ inches
1 dekameter $=10$ meters $=32.8$ feet
1 hectometer $=10$ dekameters $=328.08$ feet
1 kilometer $=10$ hectometers $=3,280.8$ feet

Weights

1 centigram $=10$ milligrams $=.15$ grain
1 decigram $=10$ centigrams $=1.54$ grains
1 gram $=10$ decigram $=.035$ ounce
1 decagram = 10 grams $=.35$ ounce
1 hectogram $=10$ decagrams $=3.52$ ounces
1 kilogram $=10$ hectograms $=2.2$ pounds
1 quintal $=100$ kilograms $=220.46$ pounds
1 metric ton $=10$ quintals $=1.1$ short tons

To change	To
inches	centimeters
feet	meters
yards	meters
miles	kilometers
square inches	square centimeters
square feet	square meters
square yards	square meters
square miles	square kilometers
acres	square hectometers
cubic feet	cubic meters
cubic yards	cubic meters
fluid ounces	milliliters
pints	liters
quarts	liters
gallons	liters
ounces	grams
pounds	kilograms
short tons	metric tons
pound-feet	Newton-meters
pound-inches	Newton-meters

Multiply by
To change
2.540
. 305
. 914
1.609
6.451
. 093
.836
2.590
. 405
. 028
.765
29,573
. 473
. 946
3.785
28.349
.454
. 907
1.356
.11296

Approximate Conversion Factors

Liquid Measure
1 centiliter $=10$ milliters $=.34 \mathrm{fl}$. ounce
1 deciliter $=10$ centiliters $=3.38 \mathrm{fl}$. ounces
1 liter $=10$ deciliters $=33.81 \mathrm{fl}$. ounces
1 dekaliter $=10$ liters $=2.64$ gallons
1 hectoliter $=10$ dekaliters $=26.42$ gallons
1 kiloliter $=10$ hectoliters $=264.18$ gallons

Square Measure

1 sq. centimeter $=100$ sq. millimeters $=.155$ sq. inch
1 sq. decimeter $=100$ sq. centimeters $=15.5$ sq. inches
1 sq. meter $($ centare $)=100$ sq. decimeters $=10.76$ sq. feet
1 sq. dekameter $($ are $)=100$ sq. meters $=1,076.4$ sq. feet
1 sq. hectometer (hectare) $=100$ sq. dekameters $=2.47$ acres
1 sq. kilometer $=100$ sq. hectometers $=.386$ sq. mile
Cubic Measure

1 cu . centimeter $=1000 \mathrm{cu}$. millimeters $=.06 \mathrm{cu}$. inch
1 cu . decimeter $=1000 \mathrm{cu}$. centimeters $=61.02 \mathrm{cu}$. inches
1 cu . meter $=1000 \mathrm{cu}$. decimeters $=35.31 \mathrm{cu}$. feet

Multiply by	To change	To	Multiply by
2.540	ounce-inches	Newton-meters	.007062
.305	centimeters	inches	.394
.914	meters	feet	3.280
1.609	meters	yards	1.094
6.451	kilometers	miles	.621
.093	square centimeters	square inches	.155
.836	square meters	square feet	10.764
2.590	square meters	square yards	1.196
.405	square kilometers	square miles	.386
.028	square hectometers	acres	2.471
.765	cubic meters	cubic feet	35.315
29,573	cubic meters	cubic yards	1.308
.473	milliliters	fluid ounces	.034
.946	liters	pints	2.113
3.785	liters	quarts	1.057
28.349	liters	gallons	.264
.454	grams	ounces	.035
.907	kilograms	pounds	2.205
1.356	metric tons	short tons	1.102
.11296			

Temperature (Exact)

| ${ }^{\circ} \mathrm{F}$ | Fahrenheit | $5 / 9($ after
 temperature | subtracting 32) | Celsius |
| :--- | :--- | :--- | :--- | :--- |$\quad{ }^{\circ} \mathrm{C}$

PIN: 044616-000

