Radio Communications Agency Netherlands

Characteristic Wave Diversity in Near Vertical Incidence Skywave propagation

Ben A. Witvliet

European Conference on Antennas and Propagation

Radio Communications Agency Netherlands

We often take our telecommunication infrastructure for granted...

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Radio Communications Agency Netherlands

What if there was nothing at all..?

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

What if our infrastructure were suddenly destroyed..?

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

What if our infrastructure were suddenly destroyed..?

- [1] B. Sims, "The Day after the Hurricane: Infrastructure, Order, and the New Orleans Police Department's Response to Hurricane Katrina," in Social Studies of Science, vol. 37, no. 1, Feb. 2007, pp. 111-118.
- [2] L. K. Comfort, "Cities at Risk: Hurricane Katrina and the Drowning of New Orleans," in Urban Affairs Review, vol. 41, no. 4, March 2006, pp. 501-516.
- [3] A. Kwasinski, W. W. Weaver, P. L. Chapman, P. T. Krein, "Telecommunications Power Plant Damage Assessment caused by Hurricane Katrina – Site Survey and Follow-Up Results," presented at INTELEC, Providence, Sept. 2006.
- [4] M. Kobayashi, "Experience of Infrastructure Damage Caused by the Great East Japan Earthquake and Countermeasures against Future Disasters," in IEEE Communications Magazine, March 2014, pp. 23-29.
- [5] L. K. Comfort, T. W. Haases, "Communication, Coherence and Collective Action: The Impact of Hurricane Katrina on Communications Infrastructure," in Public Works Management & Policy, vol. 10, no. 4, Apr. 2006.
- [6] D. Bodson, E. Harris, "When the Lines Go Down," IEEE Spectrum, March 1992, pp. 40-44.
- [7] A. Tang, et al., "Lifeline Systems in the Andaman and Nicobar Islands (India) after the December 2004 Great Sumatra Earthquake and Indian Ocean Tsunami," Earthquake Spectra, vol. 22, no. S3, June 2006, pp. S581–S606.
- [8] H. Gerritsen, "What happened in 1953? The Big Flood in the Netherlands in retrospect," in Phil. Trans. R. Soc. A, vol. 363, no. 1831, June 2005, pp. 1271-1291.

Ben A. Witvliet

Radio Communications Agency Netherlands

Could nature also provide a solution..?

lonosphere, height 80-800 km

Ben A. Witvliet

Radio Communications Agency Netherlands

Near Vertical Incidence Skywave (NVIS) propagation

can be used to cover a continuous area of 400 x 400 km

<u>without</u> a network infrastructure. Frequency 2-12 MHz.

- + No rain attenuation.
- No blocking by collapsed buildings or structures.
- + Works within canyons and urban canyons.
- + No antenna beam pointing.
- + No subscription, no fees.

Radio Communications Agency Netherlands

Near Vertical Incidence Skywave (NVIS) propagation

can be used to cover a continuous area of 400 x 400 kmwithout a network infrastructure.Frequency 2-12 MHz.

- Frequency selective propagation.
- Depends on solar radiation and geomagnetic field.
- Limited bandwidth.
- Multipath fading.

Radio Communications Agency Netherlands

Near Vertical Incidence Skywave (NVIS) propagation

can be used to cover a continuous area of 400 x 400 km without a network infrastructure.

- Frequency dependent propagation.
- Depends on solar radiation and geomagnetic field.
- Limited bandwidth.
- Multipath fading.

Radio Communications Agency Netherlands

NVIS antenna diversity experiments to reduce fading or realize MIMO

 Strangeways, 2006 	sim. correlation 0.8	500m antenna separation
• Guneshekar et al., 2009	meas. corr. 0.9-1.0 meas. corr. 0.3-0.9 meas. corr. 0.3-0.6 meas. corr. 0.2-0.8	monopoles spaced 15m monopoles spaced 45m crossed dipoles loop array radius 25m
 Daniels et al., 2013 	meas. corr. 0.5-0.9	crossed loops
 Ndao et al., 2013 	meas. corr. 0.2-0.9	spiral cone and delta

Can we decrease the antenna correlation?

Radio Communications Agency Netherlands

Appleton's experiments (1931-32)

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Appleton's experiments (1931-32)

Magneto-ionic theory: the upwards waves are split into two characteristic waves: the ordinary and extraordinary wave.

Radio Communications Agency Netherlands

Is received (RHCP)

Radio Communications Agency Netherlands

Measuring the Isolation between the Characteristic Waves

1 Reason 1	
Happy Hour	
E 1800/2100	
Pro 095 a /1506	
Res 0500 / 36	

We thought our research was unique...

Until we discovered this publication in Lisbon! ©

Ben A. Witvliet

Radio Communications Agency Netherlands

Measuring the Isolation between the Characteristic Waves

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Measuring the Isolation between the Characteristic Waves

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Measuring the Isolation between the Characteristic Waves

Radio Communications Agency Netherlands

Measuring the Isolation between the Characteristic Waves

Radio Communications Agency Netherlands

Measuring the Isolation between the Characteristic Waves

Radio Communications Agency Netherlands

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Characteristic Wave Diversity

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Characteristic Wave Diversity

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Characteristic Wave Diversity

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Characteristic Wave Diversity

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Characteristic Wave Diversity

First measurement day: >10.000 samples 5 sec. data 10.2 dB improvement over one characteristic wave

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Characteristic Wave Diversity

Second measurement day: >10.000 samples 5 sec. data 9.2 dB improvement over one characteristic wave

Ben A. Witvliet

EuCAP 2015

Radio Communications Agency Netherlands

Characteristic Wave Diversity

Mean signal strength	Day 1	Day2
RHCP mean	54.7 dBuV	54.3 dBuV
LHCP mean	52.4 dBuV	51.8 dBuV
Char. Wave Div. mean	55.2 dBuV	54.9 dBuV

0.2% time threshold	Day 1	Day2
RHCP 0.2%	26.2 dBuV	27.1 dBuV
LHCP 0.2%	29.2 dBuV	25.3 dBuV
Char. Wave Div. 0.2%	37.9 dBuV	35.4 dBuV
Diversity gain	10.2 dB	9.2 dB

Ben A. Witvliet

Radio Communications Agency Netherlands

Summary / Conclusions

- ✤ When all lines are down, NVIS can provide a solution.
- ✤ Ionospheric fading costs 10-30 dB additional link budget.
- Diversity could help, but antenna correlation is high.
- Circular Polarization provides 25 dB channel isolation.
- ✤ 10 dB improvement demonstrated with Characteristic Wave Diversity.

Radio Communications Agency Netherlands

Future research

- □ Higher sampling speeds.
- Synchronous measurement on Linear Polarization, LHCP and RHCP.
- Demonstration at other distances, azimuths and geomagnetic latitudes.
- □ Polarization matching.

Radio Communications Agency Netherlands

Characteristic Wave Diversity in Near Vertical Incidence Skywave propagation

Ben A. Witvliet

University of Twente Telecommunication Engineering group P.O. Box 217, 7500 AE Enschede The Netherlands

Tel.: +31 6 5124 8341 E-mail: b.a.witvliet@utwente.nl http://nl.linkedin.com/pub/ben-witvliet/7/97/536 https://www.researchgate.net/profile/Ben_Witvliet

